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R&D, Subsidies and Productivity

Abstract

In this paper we formulate a model that extends the traditional theoretical literature on the
optimal management of an R&D project by emphasizing the model's empirical and policy
implications. We solve the firm's dynamic problem and use the resulting optimal R&D
policy to assess the role of subsidies aimed at stimulating R&D activities. The theoretical
framework illustrates that the sign and size of the "additionality effect"—the change in the
amount of company-financed R&D caused by the subsidy —depends on the model's
parameters and distributional assumptions. It is, therefore, an empirical matter. The model
also provides a framework for interpreting anew the empirical association between R&D
expenditures and productivity growth found in many micro-level productivity regressions.
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1 Introduction

Economic growth driven by investments in research and development (R&D) is one of
the main building blocks of the new models of growth (Aghion and Howitt 1998, Help-
man and Grossman 1991). At the same time, the empirical literature reaches the robust
conclusion that R&D is associated with productivity gains at the firm and industry level
(Griliches, 1998). Yet, “doing R&D”-the process by which investments in research are
transformed into new ideas—is a poorly understood concept, especially by economists.
This state of affairs is troublesome because policies aimed at promoting R&D activi-
ties are consequently based on a weak grasp of the process generating successful R&D
outcomes.’

In this paper we give a precise meaning to the term “doing R&D” and thus con-
tribute to the micro-foundations of the R&D-driven growth models and empirical work
mentioned above. We model the ongoing decisions of a firm manager to engage in re-
search and to develop the ideas generated by its research. We solve the firm’s dynamic
problem and use the resulting optimal R&D policy to assess the role of subsidies aimed
at stimulating R&D. The model is also used to interpret anew the empirical association
between R&D expenditures and productivity growth.

We start from the premise that there is a well defined objective—a new product or
a new process—that is known to the firm’s manager. The technological process leading to
the final outcome can be broken down into stages—these stages being technical problems
that need to be successfully addressed in order to make progress towards the final ob-
jective. At each stage the firm is involved in “parallel research” (Nelson, 1961), whereby
the firm sets up n research teams who are required to come up with alternative solutions
to the technical problem associated with the particular stage of the R&D program. Af-
ter selecting the most profitable among the n alternative solutions, the firm’s manager
further decides on whether it is worth it to develop such a solution, or to postpone its
development until next period in the hope that the research teams will come up with
better ideas.

If the proposed solution is implemented and succeeds, the R&D program moves to
the next stage. The firm derives returns from the accumulated number of successes. If

the solution fails, the firm can try again next period. There is a project reservation cost

'Kortum (1997) and Bental and Peled (1996) made some progress in modeling the R&D process at
the firm level.



below which the firm will continue with the project and above which the firm will stop its
development for the period. Thus, if n > 0, the firm never stops doing research but there
are periods of more intensive activity when the firm is engaged in the development and
implementation of the ideas generated by its research. Otherwise, when no development
is undertaken, the R&D staff is just involved in finding better ideas.

The model is rich enough to allow for dynamics, different types of uncertainty and,
particularly, to distinguish between research and development activities. Yet it is simple
enough to permit an explicit solution for the optimal investment in R&D and for the
resulting firm value. The model generates a number of testable predictions and some of
these are addressed in the paper.

Under certain conditions, firms facing better markets, or higher probability of suc-
cess, will have larger research departments and will also develop their ideas more often.
Consequently, they will make faster progress in their R&D program. The same is true for
firms with a lower cost of setting up research teams. These firms will be more technolog-
ically advanced and, even controlling for the technological level, these firms will be more
valuable. The model, however, does not imply an unambiguous effect of these parame-
ters on development expenditures. Consequently, the effect of the model’s parameters on
total R&D expenditures—likely to be the only observed R&D measurement—is also am-
biguous, and depends on the parameter configuration and distributional assumptions.

This paper can be seen as continuing the tradition of the old theoretical literature
on the optimal management of an R&D project (Kamien and Schwartz, 1971; Lucas,
1971; Grossman and Shapiro, 1981) with special emphasis on the empirical implications
of the model. This analysis requires a very detailed description of what constitutes an
R&D program: for example, its payoffs, the manner in which “progress” is achieved and
the sources of uncertainty. As in the aforementioned papers, we characterize the optimal
path of R&D expenditures and derive comparative statics results.

The paper is organized as follows: Section 2 describes the structure of the R&D
program, solves the dynamic model explicitly and analyzes its properties. Section 3
introduces R&D subsidies into the model and compares different subsidy policies. The
relationship between TFP growth and R&D implied by the model and its implications
for the interpretation of empirical estimates of the relationship is taken up in Section 4.

Conclusions close the paper.



2 A Model of Research and Development

2.1 The Structure of an R&D Program

Consider a firm that, throughout its lifetime, is involved in the research and development
of products or processes within a specific technological field. For example, the firm may
be devoted to the research and development of products in the area of digital imaging.
This firms’ R&D program is implemented by completing a series of stages. These stages
are technical problems the firm needs to solve in order to advance in its R&D endeavor.
As in Dutta (1997), these stages have a natural ordering. That is, each stage has to be
completed in a specified order which is known to the firm’s manager.

At each stage, the firm is involved in two activities. The first activity is research,
which consists of R&D teams proposing ideas or solutions to the technical problem
faced at each stage. The second activity is development, which consists of developing
or implementing the “best” proposed solution. Only one idea, if at all, is developed.
Throughout the paper, the term R&D project comprises both activities—research and
development—during a particular stage, while the term R&D program refers to the whole
sequence of R&D stages or projects.

At the start of each stage, the firm sets up n identical research teams that work
independently. Each research team proposes one solution to the technical problem that
needs solving. This “parallel” research approach is one way to cope with the technological
uncertainties in R&D, and appears to be quite common in practice.? We assume that
there are potentially many unknown ways of solving the problem associated with a
particular R&D stage. These potential solutions differ in their cost x. The research
outcome-the R&D solution—is a random variable because the particular solution that
arises from the problem-solving activities of a research team is not known beforehand. In
this framework, the outcome of the research phase is a draw from a stationary distribution
of costs, denoted by G(z).?

There is no guarantee that a solution will work, i.e., the proposed idea may fail to

2A parallel-path strategy was utilized in the famous atomic bomb project, and is quite standard in
agricultural and medical research. See Nelson (1961) for other examples and for a formalization of the
notion of parallel research. See also Scherer (1984), chapter 6.

3In Evenson and Kislev (1976), the solution of the R&D problem also requires a draw from a known
distribution of potential solutions. However, the draws are interpreted as different potential technologies
rather than different costs of development.



solve the R&D problem and the project will not be completed.? In this event, the firm
can try again next period. Completing an R&D project means that the firm successfully
implemented a solution to the problem associated with that particular stage. We denote
the probability of success in developing a solution by 7 and we let this probability increase
with the cost of the project. Indeed, we assume, that 0 < m(z) < 1 is and increasing

and concave function of z,°
7(0) =0,7'(z) > 0,7"(x) <0

This means that more expensive solutions are “better” in the sense that they are
more likely to succeed. Note that this formulation of the success probability includes the
case of a constant 7.

The per-period cost of each research team is b.° b is thus the cost of sampling
from the G(z) distribution. The empirical counterpart to nb could be the wages and
equipment of the research staff.

After observing the n solutions, the firm selects the most profitable one, denoted
by z*. T x* reflects the extra costs in materials and equipment associated with imple-
menting the best idea proposed by the R&D staff. The most profitable solution is chosen
by trading off increases in the success probability against increases in cost. Higher devel-
opment expenditures x increase the probability of success but if the cost of development
is deemed too high, the firm may decide to postpone development until a better idea
arrives. That is, if the research teams were unlucky and drew very unprofitable ideas,
the firm may decide not to incur any development expenses at all. If, however, the firm
decides to develop the idea, it embarks on the development phase.

Let w be the state variable of the firm representing the technological progress of the
R&D program. If the firm does not implement the proposed solution z*, it will remain

in its current state with probability one. If the proposed solution is implemented and

“In the sample of R&D projects analyzed by Mansfield et al. (1971), the average probability of
technical success varied between 52 and 68 percent.

5Because the success probability is bounded by 1, concavity is likely to set in. For simplicity, we
assume concavity of 7(x) throughout the support of .

6Linear costs are used for expositional convenience and because it corresponds to our numerical
examples (see below). The analysis can be trivially extended to the case of increasing, convex, costs of
research.

TIf all sampled solutions differ only in their cost, i.e.,if 7(x) is flat, the most profitable solution would
also be the cheapest one in the sample.



succeeds, the firm advances one research stage. Thus, given today’s technological state
w, next period’s state w’ will either remain at w or increase to w + 1. If the firm decides
to develop, the firm’s state variable evolves according to
w with probability 1 — m(z*)
W' = (1)
w + 1 with probability 7(z*).
Thus, w represents the number of accumulated successes in the R&D program. As
in Ericson and Pakes (1995), the firm is assumed to market and make profits on the
product using the current technological state w of the R&D program. For tractability,

it is assumed that current returns are linear

P(w) = gw (2)

In Section 4, ¢w is interpreted as the profits from producing output using a Cobb-
Douglas production function in conventional inputs and capital-enhancing technology
level w, gross of R&D costs. Prices are assumed to be constant and known to the firm.

Note that neither the probability of successful development 7(z) nor the distribu-
tion of (costs of) ideas G(z) depend on the technological state w. These assumptions
simplify the analysis without hindering the main message of the paper. Their draw-
back is that the resulting dynamics are driven solely by the future returns accruing to
accumulated R&D successes.

Note also that more research—a higher n—does not increase the probability of suc-
cess m, conditional on development being undertaken. However, as will be shown below,
a higher n implies that a profitable solution is more likely to be found and, consequently,
it raises the probability of development.

The present model differs from traditional models of R&D (e.g., Kamien and
Schwartz, 1971; Lucas, 1971; Grossman and Shapiro, 1981) in several dimensions. First,
traditional model do not explicitly distinguish between research (n) and development
(z*). Second, in traditional models the magnitude of the R&D outcome-the R&D step—is
stochastic, whereas in the present model the R&D step is known but its cost is uncertain:
the firm knows exactly where it is heading and what needs to be done at each R&D stage
and only needs to find a way of doing it in the most profitable way. Third, in traditional
models more R&D effort always leads to more outcomes or to a higher probability of
success, whereas in the present model development expenditures may be so high that

development is postponed. Fourth, the model developed in this paper does not impose a



terminal stage at which point a discounted infinite stream of returns is collected. Lastly,
the present model introduces two types of uncertainty: a technical-related uncertainty

in the form of 7 and a cost-related uncertainty in the form of G(x).

2.2 The Firm’s Dynamic Problem

The firm’s manager chooses the optimal number of research teams n and decides on
whether or not to pursue development in order to maximize the expected discounted
stream of per-period profits.

In each period, and in any state w, the firm chooses the number of research teams
n, takes n draws from G(z), and collects ¢w — nb. After selecting z*—the most profitable
idea among the n proposals®-the firm decides whether to develop the solution embodied
in the realized z* or to suspend the development of the R&D project. If the project is
developed, the firm pays z* and moves to w+ 1 with probability 7(x*) or stays at w with
probability 1 — 7(z*). If no development is undertaken, the firm remains at w and waits
until next period in the hope of getting a better x*.

Let V(w) be the maximal value of the expected discounted stream of per-period
profits when the firm is in technological state w. Let Vj(w,n,z) be the maximal value of
the R&D program at state w when the firm samples n solutions and the proposed solution
costs z, but the firm decides not to develop the R&D project. And let Vo(w,n,x) be
the maximal value associated with the decision to develop (continue) the R&D project.

Vi(w,n,x) and V5(w, n, z) are defined by

Vi(w,n,z) = Vi(w,n) = pw — nb + BV (w)

Volw,n,z) = ¢pw —nb—z + pr(z)V(w+ 1)+ (1 — n(x))V(w)
=Vi(w,n) + fr(z) [V(w+1) = V(w)] — =
where 0 < 3 < 1 is the discount factor.”

Expression (3) says that when the firm does not develop the R&D project, and w

remains unchanged in the next period, the firm’s value equals the current net returns

8This is analogous to Stigler’s (1961) model of searching for the lowest price from a known distribution
of prices.

9We assume there are no liquidity constraints: capital markets allow the firm to borrow as needed
at the discount rate 3.



¢w — nb plus the maximal value of the expected discounted stream of per-period profits
when the firm is in technological state w. If the firm pursues the project, a cost z is
incurred and the firm moves to state w + 1 with probability 7(z), or remains in state w
with probability 1 — m(z).

Note that V5 equals V; plus the continuation value

Clw,z)=p0r(z)[Vw+1) —V(w)| —z (4)

C(w, ) equals the expected discounted stream of additional profits resulting from
the development of the ideas at stage w. Because C(w, x) refers to additional benefits
for a given cost x, the continuation value does not depend on n, the number of ideas
sampled. Research expenditures are sunk.

Given n, the most profitable project among the n proposals x1,... ,z, is the one
giving the highest value V5 (w, n, x) or, equivalently, the highest continuation value. Thus,

x* is defined implicitly by

Vo(w,n,z*) = Mazx {Va(w,n, x1),... , Va(w,n,z,)}
=Vi(w,n) + Maz {C(w,z1),...,C(w,z,)}
= Vi(w,n) + C(w, ")

where C(w, z*) = Max {C(w,x1),... ,C(w,z,)}.

V(w), the maximal value of the R&D program at w, satisfies the following functional

equation

V(w) = ng EMax{Vi(w,n), Va(w,n,z*)} (5)

The inner maximization refers to the development decision—develop only if its ex-
pected value is larger than that of not developing—given z*, while the outer maximization
refers to the choice of n which affects the probability distribution of x*.

Using the expression for V; and V5 from (3) we can also write

V(w) = Mnax [¢pw — nb+ EMazx {0,C(w,x*)}] (6)

1-p

= ng [pw —nb+ E (C(w,z")|C(w,z*) > 0,n) P,(C(w,z*) > 0)]

1
1=



where P,(C(w,x*) > 0) is the probability that C'(w,z*) is positive given a sample of n
proposals.

The firm chooses n to maximize the discounted stream of current net returns,

dw—nb
-8
probability that it is positive. As shown in Appendix 1, the probability distribution of

plus the expected continuation value, given that it is positive, weighted by the

C(w, z*) depends on n because it is the continuation value of the most profitable solution
in a sample of n solutions.

The expected value of the maximum between zero and the continuation value, the
EMaz term in (6), plays an important role in the solution. We will, therefore, denote it
by

EC(w,n) = E(C(w,z")|C(w,z*) > 0,n) P,(C(w,z") > 0) (7)

2.2.1 Optimal Development

Note from (5) that, given n, the firm chooses to develop the solution z* if V5(w, n, z*) >
Vi(w,n), i.e., if the continuation value is positive, and chooses to wait until next period
if Vo(w,n, z*) < Vi(w,n), i.e., if the continuation value is negative.

We can show the development decision graphically by examining the continuation

function (4). For given w, the function C(w, z) starts at C'(w,0) = 0 and, provided
C'w,0)=0V(w+1) = V(w)]#'(0)—1>0 (8)

C(w, z) increases until it attains a maximal value C' = C(w, Z(w)) at #(w).!® Thereafter,
C(w, z) declines towards the negative values (see Figure 1).!! We will assume that (8)

holds at every w to ensure that the development option is not ruled out a-priori.

102* is the value of z; in the sample of size n that has the highest continuation value, while Z(w) is

the maximizer of the continuation function. Thus C'(w, z*) < C(w,Z(w)) and equality is attained when
one of the sample realizations equals T(w).

"The range of the continuation function is (—oo, 6’)
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Figure 1: Continuation Value C(w, z)

It follows that there exists a positive value of z at which the continuation value is

zero. This reservation cost, denoted by T (w) , is defined by
0= Gr(F (@) [V(w+1) = V(W) —F ()

Clearly, C(w,z) is positive for z < T(w) and negative for x > T (w). The firm

therefore follows a reservation cost policy:

develop the project if * < T (w) <= C(w,z*) >0

suspend the project if 2* > 7T (w) <= C(w,z*) < 0

When z* equals T (w) the firm is indifferent between postponing and developing

the project: the continuation value is zero.

2.2.2 Optimal Research

The solution to the maximization problem in (6) requires the conditional expectation of

C* = C(w,z*). In Appendix 1, we show that its distribution function is

Fon(c) = [1+4G(27()) = G(2*(0))]" (9)

where x7(¢) and 27 (¢) are, respectively, the minimal and maximal roots of the equation
C(w,z) =¢, and 27 (¢) < T(w) <z (c) (see Figure 1).



Note that F,, ,(c) decreases with n; the larger the size of the research department,
the higher the probability of coming up with more profitable solutions and, thus, the
higher the expected continuation value. Note also that F,,(c) depends on w, because
z~(c) and x*(c) depend on V(w + 1) — V(w).

The probability of a positive continuation value-the probability of development—is
1 — F,,(0). Because

1—F,,(0)=1—[1+G(z (0) — G(z*(0))]" (10)
=1-[1+G(0) - G@W))]"=1-[1-G@W))]"

the probability of development equals the probability that the lowest z; is less than or
equal to the reservation cost T(w). This should indeed be the case because the two events
are equivalent.

The optimal number of research teams is found by equating the marginal benefit
(M B) of n to its marginal cost, b. M B,, is the difference in the expected continuation

value when the firm moves from n — 1 to n research teams

MB, = EC(w,n) — EC(w,n — 1)

- ﬁ ( /0 ‘ cdF,, ,(c) — /0 : chwm_l(c)) (11)

1

& . .
- ( /0 Fonoi() (Gla* () - Gla (c)))dc>

~

using integration by parts and F, ,(C) = 1.
From the last row in (11) we have that M B, > 0, that M B, is a decreasing
function of n, and that lim M B,, = 0 (see Figure 2). M B, also depends on w but this

n—oo

is left implicit in the notation.

10



MC, MB

A MC
-8
MB
n* n
Figure 2: Optimal n
The (unique) optimal 7 is an integer satisfying.
b
MB, > —— > MB, 1 (12)

1-p
This condition says that the marginal benefits from setting up the n'* research
team should be larger than its cost, but the marginal benefits of the n'* + 1 team
should be below its setup cost. Because M B, depends on F,, ,(c) which depends on
V(w+1) — V(w), the optimal number of research teams may vary with the state w.
Clearly, as long as b > 0, it is not optimal to let n increase without bounds. Thus,
the optimal n is finite but can be zero. To ensure a positive n, the marginal benefit of

the first draw must be larger than its marginal cost

1 e .
MB: = 5 [ (Gt () - Gl (@) de b (13)

Requirement (13) says that, given a distribution of development costs G, the fixed
costs of research b should not be “too high”. Loosely speaking, the M B curve should

intercept the vertical axis at a higher value than b.!2

12Because the expected continuation value at n = 0 is zero, we also have

MB, = ﬁE(C’ﬂC’* >0,n = DGEFW))

which says that it pays to set up at least one research team when the expected continuation value from
a single x draw is larger than its cost.

11



An interesting issue that has attracted attention in the empirical literature on R&D
is the characterization of firms that choose to engage in R&D (see Bound et al. (1984)).
In our model, a firm that engages in R&D is a firm that has a positive n. From (13)
we see that firms with lower b's are more likely to find R&D a rewarding activity and
will, therefore, have a positive n. Differences in b across firms may arise from differential
access to financial capital. The model therefore implies that firms facing lower marginal
costs of obtaining funds are more likely to engage in R&D. Indeed, Bond, Harhoff and
Van Reenen (1999) find that, for British firms, financial constraints affect the decision
to engage in R&D rather than the level of R&D spending by participants.

In order to trace the effect of changes in the model parameters (7, ¢, and b) on the
optimal number of research teams or to trace the evolution of R&D expenditures and
the technological state w over time, it is necessary to know some features of the value

function. The following proposition is proved in Appendix 2.

Proposition 1 The value function is linear in w. It is given by

*

V) = s (o= nbr | O G @) - Gt de) (4
- 5) :

where n* satisfies (12) and T satisfies O’ (z) = 1 — f.

Br(T)¢
(1-8)

The reservation cost project is T = , while the continuation value is C(x;) =

Br(zi)e ..
a-p) — L

The key assumptions allowing us to derive an analytical solution for V' (w) are the
linearity of the current return function ¢(w) in (2), and the non-dependence of 7 on w.'?
These assumptions ensure that the value function is linear in w, and this implies that
neither the continuation function nor the distribution function of C'(z*) depend on w.
Because the choice of n is determined by the expected continuation value, optimal n
does not depend on w either.

As mentioned above, there is no guarantee that a strictly positive n exists: under
some parameter configurations, it may be more profitable to never engage in R&D.

However, if at some point it is profitable to do research, i.e., n > 0, then the firm will

13Up to this point the model could have been trivially generalized to allow for concave returns ¢(w),
increasing-in-w success probability 7(w, x), and increasing, convex, research costs b(n). The continuation
value would simply be fr(w,z) [V(w + 1) = V(w)] — =.

12



always be engaged in research. Furthermore, the firm will be doing the same amount
of research in every state w. Nevertheless, because of the randomness in z*, the firm
will not always develop its ideas, although the probability of development is the same in
every state w. Thus, R&D expenditures consist of a constant expenditure on research,
nb, and a random expenditure on development. This implies a persistence in R&D
expenditures over time which is consistent with the empirical findings (see Lach and
Schankerman,1989; Mulkay et al., 2000).

An intuitive understanding of the value function follows from the analysis of the

value of not developing a solution at state w. From (3), (10) and Proposition 1, we have

‘“Wﬁzﬂ_ﬁ)Gw—hf+ﬁE(%¥§§—mWﬁgf)ﬂ-{y_ggwﬁ)

using the equality foachn(c) = FE (C(z*)|C(z*) > 0,n) (1 — F,(0)).

The first term in Vj(w) is the discounted present value of the number of accu-

pw—bn*
1-8
account of the expected revenues and development costs from period ¢ + 1 onwards.

mulated successes net of research costs, . The expected continuation value takes
A success occurs with probability m(z*) (1 -1-G (f)]") and yields returns ¢ forever.

o (1-1-6@)"" ) Br(a")¢
Thus, g =5

success in period t 4+ 2 (note that the expectation operator uses the distribution func-

is the expected discounted present value of a single expected

tion of z*). The expected discounted development cost in period ¢t + 1 is SF [z*|z* < T
with probability 1 — [1 — G(Z)]"™ and zero with probability [1 — G(Z)]" . Adding up the
stream of revenues and costs from period t+ 1 onwards and discounting yields the second
term in Vj(w). The value of developing the project in period ¢, Va(w, z*), equals V;(w)
plus the continuation value associated with z*.

In sum, the firm pursues an R&D program whose state of progress is given by the
number of accumulated successes w. In each period, the firm has to solve a technical
problem associated with the current project. The proposed solution to the technical
problem costs x* which is the most profitable solution among n proposals drawn from
some distribution G. If the proposed solution is implemented and works, the R&D pro-
gram moves to the next stage. If the solution fails, the firm can try again next period.
The firm chooses the amount of research—the number of draws on x—and based on the
realized value of the most profitable proposal, it decides whether or not to develop the

proposed solution. It will opt not to develop the proposed solution when the solution is

13



too expensive. There is a project reservation cost below which the firm will continue with
the project and above which the firm will stop its development for the period. Thus, if
n > 0, the firm never stops doing research but there are periods of more intensive activity
when the firm is engaged in the development and implementation of the ideas generated
by its research. Otherwise, when no development is undertaken, the R&D staff is just

involved in finding better ideas. In this latter case, R&D expenditures are only nb.

2.3 Comparative Statics

Let us analyze first the effect of the model’s parameters on the value function. From (14),
and using an envelope theorem it is clear that V' (w) decreases with b, the marginal cost of
a research team. The effect of changes in ¢ on V(w) operate through the current returns
and through the continuation function C. Changes in 7w affect only the continuation
function and their effect is essentially the same as the effect of changes in ¢. More
successful firms and firms facing better markets (higher ¢) have higher continuation

values at any = (and w). The following proposition is proved in Appendix 3.

Proposition 2 V(w) decreases with b, and increases with ¢ and .

The model parameters also affect the distribution of continuation values and, there-

fore, the probability of development. Note that

OF,(c) 0H(c)
=—nkF,_
a6 9,
where 0 < H(c) = G(z"(c)) — G(z7 (c)) < G(T) is a decreasing function of c.
In the proof of Proposition 2, we show that 81;—(;6) > 0. Thus, the higher ¢ (or ),

the distribution of continuation values gets better in the sense that the probability of

obtaining higher ¢’s increases. We have
Corollary 1 F,(c) decreases with ¢ (and ) at every c.

This means that more successful firms, and firms facing better markets, not only
have higher continuation values, but also higher probabilities of obtaining them. This
implies, of course, that these firms are more likely to engage in development of their
research ideas.

Consider now the effect of a change in b, the marginal cost of research, on the
number of research teams n. Because n is discrete—there is no meaning to half a draw—

small changes in b, or in any of the model’s parameters, may not affect the optimal n,
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i.e., the inequalities of the first order condition still hold at the same n after a small
change in b. This implies that optimal n is a step-function of b. Because the b curve
in Figure 2 shifts upward and the M B curve is not affected, the optimal n decreases.
Graphing the optimal n against b results in a step function decreasing in jumps of size
one.

As mentioned above, an increase in ¢ (or in 7) increases the continuation value
C(zx) at any z but its effect on the marginal benefit M B,, is not immediately clear. The
firm will increase n if the marginal benefit of a research team M B,, increases—if the M B
curve shifts up in Figure 2. But the assumptions so far do not guarantee that this will
occur.'*

Because the marginal benefit is the difference in conditional expected continuation
values when n increases by one unit, equation (11), the change in M B,, resulting from an
increase in ¢ depends upon its effect on the expected continuation value given n and given
n — 1 research teams, £C(n) and EC(n —1). If these two conditional values increase by
the same amount then M B is not affected by ¢. If the effect on the expected continuation
value is larger the larger is n, then M B,, increases with ¢ prompting an increase in n. In
this case, n and ¢ are, loosely speaking, “strategic complements”. Changes in ¢ affect
positively the marginal benefit of n and, given decreasing marginal benefits, n has to
increase for an optimum to be achieved. If n were a continuous variable, n will increase
with ¢ if 82%5;@ > 0. If, on the other hand, increases in ¢ increase EC'(n — 1) by more

than they increase EC(n), M B,, will decrease and so will optimal n.

In Appendix 4, we proof the following proposition

Proposition 3 If 1 — F,(c;¢) exhibits strictly increasing differences in (n,¢) then n

increases with ¢.

A similar proposition holds for changes in 7 instead of in ¢.

Proposition 3 gives a sufficient condition to ensure monotonic comparative statics.
The condition is that the probability that C'(z*) is greater than any ¢ exhibits strictly
increasing differences in (n, ¢). Intuitively, if the increase in the probability of getting

large C’s resulting from an increase in n is larger the larger is ¢, then it pays to incur

For example, suppose that after the increase in ¢ the new maximizer of C(z) is found in a segment
of the support of x whose probability is very high. Then, at the higher ¢, it may pay the firm to decrease
n and save the cost b.
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the extra cost b and increase n when ¢ increases.!” Thus, for monotonic comparative
statics to hold in this model, the distribution function G(z) and the success probability
function 7(z) should be restricted to the set of functions guaranteeing that 1 — F,(c; ¢)
exhibits strictly increasing differences in (n, ¢). That is, without imposing restrictions
on these functions, the amount of research may not be unambiguously increasing in the
market and technological success parameters.

This condition implies that EC(n, ¢) exhibits strictly increasing differences which
means that for ¢, > ¢, (see Appendix 4),

MB,(¢y) = EC(n,¢,) —EC(n—1,¢,) >
EC(?’L, ¢1) - EC(’H, -1, ¢1)
= MB,(¢,)

Development expenditures, denoted by d, are either zero if x* > T or x* if 2* < T,

0 ifa*>7=
d= (15)

*

¢ <7
In order to characterize expected development expenditures we first need to derive
the density function of z*. We argue as follows. Let x < Z. The probability that in a
particular sample of size n, the most profitable project costs x is equal to g(x) times the

probability that the other n — 1 draws are less profitable, [1 — G(z*(C(x))) + G(z)]" ",

times n. We proceed analogously for ¥ < z < 7 and for > 7. Then,

ng(a) [1 - G@*(C@) + G@)"™'  z<3
gor(z:m) = { ng(a)[1 — G(z) + G (C@))"" T<z<7 (16)

ng(z) [1 — G(x)]" T<z

Expected development expenditures d are, therefore,

I5Tf n were a continuous variable, this condition is implied by an everywhere positive cross-partial

. . O(1—F,(c;9))
derivative Dndd .
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(17)

E(d|d > 0) = B(a*|z* <7) = /wal _‘qﬁ*(_x;(?()f)]ndx

These complicated expressions are difficult to characterize analytically. We there-

fore resort to a parametric example.

2.4 A Parametric Example

We illustrate the comparative static results using a piece-wise linear functional form for

the success probability,

(z) = (18)

for a1 > ag > 0.
The 7 function increases linearly a rate ag until x reaches a—ll Thereafter, 7 remains

constant at %11 The continuation value is

l—ﬁj%aox—x nggi
Clz) =

B¢ 1

6. % T2y

Figure 3 plots the success probability and continuation value functions.
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C(x)

0,

Assumption (8) implies that %ao > 1. The highest continuation value is obtained

at T = a_11= which does not depend on ¢. The continuation value at T is

B a1 _ foay— (1)

O:O(Z/B\)Zl—ﬁal ai (1—/8)a1

The reservation cost is

Bo ag

T=-—""

1-Gay

while the two roots of C(z) — ¢ =0 are

QI_(C) _ (1 _/B) c
Boag — (1 — )
7 (c) = lﬁ——qbﬁz_(l) —c

We computed the value function V(w) in Proposition 1 using (18) and three dif-

ferent distributions for x (uniform, exponential and lognormal) maintaining the same

mean of x in each distribution. For any given distribution, we first solved the non-linear
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equation (12) for the optimal number of research teams. The integral part of the non-
linear equation is then evaluated using a 21-point Gauss-Konrod quadrature rule and
the cumulative distribution function of the assumed distribution of x. The integral is
evaluated in each iteration of Muller’s method for solving non-linear equations. The
optimal number of research teams does not vary with w implying that the non-linear
equation needs to be solved only once. The optimal number of research teams is then
substituted into V' (w) and the integral part of the value function is evaluated using the
same Gauss-Konrod quadrature rule. Again, the integral part of the value function needs
to be solved only once since it does not vary with w.!6

The parameters used in all the computations are = 0.96, ag = 0.08 and a; = 0.10,
while we varied the values of b (from 0.10 to 1.10) and ¢ (from 0.8 to 1.8). The most
profitable project is constant at 7 = 0_—110 = 10. The mean of x was set to 40 implying that
the upper limit in the uniform distribution is 80, and that the exponential parameter is
4—10. For the lognormal distribution, we put ¢ = 1 and p = 3.189. We computed the value
function for w ranging from 1 to 100.

Table 1 presents the effect of changing the key parameters of the model on the
optimal number of research teams n. Because changes in m and ¢ have, qualitatively,
the same effects we presents comparative static results only with respect to changes in

¢. As expected, n increases with decreases in b and, at least in these computations, it

16For some distributions, however, we can solve explicitly for the value function. For example, when
G(z) is the uniform distribution on [0, 7] with 7 > T we obtain the following expression for the value

function (14)
n+1- % {1— (1— %)HH)

¢ 1 T
Vw) = mw-ﬁ- m —nb-i-m

where n is the optimal n satisfying (12).
The distribution function for C* is

ﬂ(bao 1 ﬂ¢a0 1 )n - < T T >n
a T Crt

Fn(c>:<1_(1ﬁ)al;+ﬁ¢ao(15);0 It Ee
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also increases with ¢.!7

Table 1: Comparative Statics on n

Number of Research Teams (n)
b ¢ | Uniform | Lognormal | Exponential
Change in b
0.11.0 18 13 15
0.3 1.0 9 7 8
0.5 1.0 5 5 5
0.8 1.0 2 3 3
1.1]1.0 1 2 2
Change in ¢
0.5]0.8 1 3 3
0.5 1.0 5 5 5
0.5 1.2 7 6 6
0.5 1.5 9 6 7
0.518 10 7 8

Table 2 presents the effect of changes in b and ¢ on expected development expen-
ditures (17). We distinguish between the average of positive development expenditures,
E(d|d > 0), and the average that includes zero development expenditures as well, i.e.,
when the project is not developed. In order to compute these averages, we simulated
outcomes for 3,000 identical firms over 100 investment periods. In each period, we drew
n x/s and kept z*. If x* < 7T we set d = z*; otherwise we put d = 0. The entries in Table

2 are averages over the 3,000 firms and over all 100 w’s (300,000 simulated observations).

1"Under the uniform distribution assumption we obtain,

1), _ _
Ly ()

Note that M B,, increases with T, which increases with ¢.
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Table 2: Comparative Statics on E(d)

E(d]d > 0) E() P> 0)

(1) (2) (3)
b | o | T U |LN|EXP U |LN|EXP U|LN|EXP
Change in b

0110192 9.82 | 990 | 9.76 9.75 | 9.89 | 9.75 [[ 099|099 | 0.99
0310 (192 9.74 | 998 | 9.49 891 | 9.73 9.28 ([ 091|097 | 0.98
0510|192 9.67 | 10.11 | 9.27 721 | 937 | 842 || 0.75]0.93 | 0.91
0.8]1.0(19.2) 9.62 | 10.32 | 9.07 4.06 | 818 | 6.92 [ 042]0.79| 0.76
1.1 {1.0]19.2 | 9.61 | 1047 | 8.95 231 | 6.79 | 552 | 0.24] 0.65| 0.62

Change in ¢

0508|154 7.71 | 8.95 7.56 1.49 | 6.19 | 5.17 | 0.19 | 0.69 | 0.68
0510|192 9.67 | 10.11 | 9.27 721 | 937 | 842 || 0.75]0.93 | 0.91
0.5] 12230 11.05| 10.79 | 10.41 |f 10.01 | 10.58 | 10.08 || 0.91 [ 0.98 | 0.97
05| 1.5 (288 | 12.30 | 11.63 | 11.55 | 12.08 | 11.56 | 11.48 | 0.98 | 0.99 | 0.99
05|18 |34.6 | 13.03 | 11.94 | 12.16 | 12.98 | 11.93 | 12.15 || 0.99 | 0.99 | 0.99

A decrease in b affects expected development expenditures d through the increase it
induces in n. As n increases, two things happen. First, the firm is more likely to engage
in development (see equation (10)) and this increases average development expenditures
through the increase in the fraction of projects being developed (see the second and third
columns in the upper panel of Table 2). Second, the firm is more likely to draw an z*
closer to ¥ so that if the initial E(d|d > 0) is below T then average non-zero development
expenditures are likely to increase (see the uniform and exponential cases in the first
column of the upper panel in Table 2). By the same token, if the initial F(d|d > 0) is
above T then average non-zero development expenditures are likely to decrease (see the
lognormal case). Whether E(d|d > 0) 2 T depends on the parameters of the model and
on the distribution of z.

Changes in ¢ affect expected development expenditures not only through the in-

duced change in n but also directly. An increase in ¢, increases C(z) at any z and
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may also increase the maximizer 7.'® Thus, the firm aims at a higher Z. In addition,
T increases and this means that more expensive solutions will be undertaken. Thus,
holding n constant, an increase in ¢ induces an increase in development expenditures,
on average. As n increases, the effect on d due to the increase in C'(z) is strengthened
when E(d|d > 0) < z, and weakened when E(d|d > 0) > Z.

In short, given some form of strategic complementarity between n and ¢ (7),
firms with higher current returns ¢, or higher probability of success 7, will have larger
research departments (n) and will also develop their ideas more often. Consequently,
they will make faster progress in their R&D program. The same is true for firms with
a lower cost of setting up research teams b. These firms will be more technologically
advanced than firms with a lower ¢ or =, or higher b and, even controlling for the
technological level w, these firms will be more valuable. The model, however, does
not imply an unambiguous effect of these parameters on development expenditures d.
Consequently, the effect of the model’s parameters on total R&D expenditures—likely
to be the only observed R&D measurement—is also ambiguous, and depends on the
parameter configuration and distributional assumptions.

The dynamics implied by the model are quite simple. Starting from an initial state
wp, w remains constant at wy until the cost of the selected project among the n draws
(x1,...,2,) is below the reservation cost T at some time ¢;. The R&D state next period
is a random variable given by (1): it can advance to wo + 1 with probability 7(d) or
remain at wy with probability 1 — 7(d). This process is repeated in every period. Over
time, as the firm successfully completes R&D stages, w increases in “jumps” of size one.
Thus, if we take a cross-section of identical firms and let them evolve independently over
time, some firms will randomly advance on their research programs while others will not.
The different realizations of the R&D process creates heterogeneity across firms. This
heterogeneity is purely due to chance but is persistent.

We close this section by examining in more detail the simulations underlying the
results in Table 2. We focus on the evolution of w and of R&D expenditures over time.
The results are based on the following parameters: 3 = 0.96, ag = 0.08 and a; = 0.10,
b= 0.5 and ¢ = 1, using the uniform distribution, G(x) = g (for illustrative purposes,
the exponential and lognormal distribution are indistinguishable from the uniform dis-

tribution).

18But note that the numerical resutls in Table 2 are based on the piece-wise linear functional form
for 7 that keeps T constant at a—ll = 10.
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We know from Table 1 that the optimal number of research teams is 5. After
initializing the w process at wy = 1 we drew 5 2’s from the U(0,80) and selected the
one z that gives the highest continuation value, C(z*). If z* < 19.2 or, equivalently,
if C(z*) > 0, we set d; = z* and drew a Bernoulli variable representing “success”
with probability m(x*) using (18). If a success resulted, we set wy = w; + 1; otherwise
wo = wy. Of course, when z* > 19.2, the project was not developed and we set d; = 0 and
we = w1. We simulated this process T' = 100 times (periods) and generated a times series
{wy, d;} . We replicated this simulation 3000 times. We can think of each replication as
an independent R&D program or firm drawn from the same population.

Figure 4 plots the evolution of w; and R&D expenditures over time for a single
firm.
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Figure 4: w and total R&D expenditures (nb + d) over time

The time-path of w is a step function with probability 7 (d)F,(Z) of moving up.
Because the mean of x is 40, it is very likely that at least one of the five draws will
be below 19.2 (1 — F,(0) = 0.746). Thus, the project is developed quite often and its
time-path looks quite smooth (top panel in Figure 4).
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In order to generate a path that looks more like a step-function we need to lower
the probability of development. We do this by increasing b to 1.1 which lowers n to 1
(bottom panel in Figure 4). Under the U(0,80) distribution, the probability that the
single x draw is less than 19.2 is about a quarter. The bottom graph look more like a
step function. In the top graph, the project is developed more frequently and therefore
reaches a higher state at the end of the period.

Averaging across the 3000 replications and plotting this average against time, we
would get a smooth straight line depicting the evolution of E(w;) over time.'

Per-period R&D expenditures nb + d are also graphed. Recall that nb is fixed at
5 x 0.5 = 2.5 plus a random variable d given by (15). One of the features of the model is
that firms do not develop their ideas continuously. The simulated firm in the top graph
did R&D in 74 periods out of a 100 and succeeded in 51 occasions giving an average
success rate of 69 percent. Table 3 reports averages across all 3000 firms of the fraction
of periods involved in development, of the average R&D expenditures nb + d and the

final technology level at which they arrived (using the parameters of the top graph).

Table 3: Summary Statistics
Fraction of periods Average R&D Final w | Success
with development | expenditure by firm rate
Mean 0.746 9.71 4741 0.622
(across 3000 firms)
STD 0.044 0.58 4.94 0.056
The success rate equals the last (W reached minus 1 divided by the number of times the firm did R&D.

As expected, firms are engaged in development in about 75 percent of their time
and are successful at it on 62 percent of the trials. As a results they reach a final

technological state of about 47 on average (=~ 100 x 0.75 x 0.62).

YRoughly speaking, the value of w after 100 periods in the top panel of Figure 5 should be equal to
w1 +99(1 — F,(0)) E(n(d)) =
1499 x 0.746 x [0.08E(d|d < 10,d > 0)P(0 < d < 10) + .8P(d > 10)] =
116460 116460
1499 x 0.746 x [0.08 x 5.893 x —— + 0.8 1—-————— | =
X 8 8 923650 0% < 223659)]
= 47.45

using the simulated data to estimate the expectations and probabilities. This result is very close to the
simulated value of w after 100 periods averaged across the 3000 replications which is 47.41.
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This average technological state masks a lot of variation across firms. Figure 5

graphs the evolution over time of five deciles of the cross-sectional distribution of w.
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Figure 5: 10%, 25" 50, 75" and 90" Percentiles of w’s Cross-sectional Distribution

In period 1, firms are all identical having the same initial w; = 1. As time passes
and firms randomly advance on their research programs, the different realizations of the
R&D process creates heterogeneity across firms. This heterogeneity is purely due to
chance but is persistent. In period 100, the bottom 10 percent of the firms have an w

below 41 while the top 10 percent has an w above 54.

3 R&D Subsidies

R&D subsidies are among the instruments used by governments to foster and guide
technological change. In some countries, such as Israel, Spain, Finland, Norway and the

U.S., governments directly subsidize the financing of firm-level R&D projects.?’ In this

20For example, the R&D support given by the ATP in the U.S., by TEKES in Finland, by CDTI in
Spain and by the Norwegian government operate in a somewhat similar manner.
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section we analyze the effect of an R&D subsidy by focusing on the effects of a subsidy
to the development phase in the R&D program.?!

We assume that application costs are nil. This guarantees that the firm applies
for a subsidy in every development phase it reaches. The sequence of events is now as
follows. The firm first decides on the number of research teams n. It then samples n
2's and submits a proposal for a subsidy specifying an expected development cost.??
The proposal is evaluated by the agency granting the subsidies and a response reaches
the firm immediately. The firm then computes the continuation values of the n z’s and
decides on z*—the most profitable solution—given knowledge on the subsidy status of the
project.

Receiving a development subsidy is an uncertain event and we assume that the
probability of receiving it, denoted by A, does not depend on the proposed estimated
cost of the project nor on the firm’s technological state w. The subsidy is a fraction
0 < a < 1 of the actual project cost.?® If the subsidy is received, the development cost
to the firm is (1 — a))z. If the subsidy is not received the cost remains x. The cost of the
R&D project can thus be written as (1 — as)x, where s = 1 when the subsidy is received
and s = 0, otherwise.

The presence of development subsidies changes the continuation value associated
with a project costing z, equation (4). We now need to condition on the presence of the

subsidy. Omitting the w’s, the continuation value is

C(z,s)=0r(x) [Vw+1) = V(w)] — (1 —as)z (19)

When s = 1, the continuation curve is shifted upwards so that the reservation cost
increases. The reservation cost Z(s) is therefore an increasing function of s. A simple
comparison of derivatives shows that Z(s), the maximizer of C(z, s), shifts to the right,

while the smallest root of C(x, s) decreases and its largest root increases (see Figure 6).

2L Subsidies to research can be thought as reductions in b.

22The expected cost can be based on the n 2’s in the sample, on the distribution function of x*, or
on some other estimate of the development costs. This will not matter in what follows.

23In Israel, the major requirement to qualify for a subsidy is that the project be “technologically
feasible”. Usually, « is 50 percent. For an excellent account of R&D policy in Israel see Trajtenberg
(2000).
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Figure 6 : Continuation Value and Subsidies

Because the firm selects x* only after its subsidy status is realized, the level of
development expenditures also changes with s. Let (zf) x7 denote the z* when (no)
subsidy is received. It is intuitively clear that z% > z7.%

The only difference with the model in Section 2 is that since C|(+) is also a function
of s, the expectation in the functional equation (6) is now taken over s as well. Us-
ing iterated expectations, and proceeding as before, we can easily show that the value

function now satisfies

1-0V(w) = Mnaxqbw —nb+ (1 —A) (/00(0) cFy (e, O)dc) + A (/00(1) cFy (e, 1)dc)
(20)

where C(s) = W — (1 —as)z(s), z(s) satisfies %%(s)) =1— as, and

Fo(c,s) = [1+ Gz (¢,5)) — Gz (c, s))}n

where 27 (¢,s) and z7(c,s) are, respectively, the minimal and maximal roots of the
equation C(w, z, s) = c. Note that the model in Section 2 corresponds to the special case
where \ = 0.

2 Note that C(w,z,s = 1) = C(w,x,s = 0) + ax. Thus, in a sample of n z's, the x; that maximizes
C(w,z,s = 1) cannot be smaller than the one that maximizes C(w,z, s = 0) because at a lower x; the
values of both C(w, z,s = 0) and az would be decreased.
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Importantly, the linearity of V' (w) is preserved. The marginal benefit of a research
team is now the difference in the conditional expected continuation value-the last two

terms in (20) as we move from n — 1 to n research teams

MB,(\) = (1— ) MB,(0) + A\MB,(1) (21)
= MB,(0) + A (MB,(1) — MB,(0))

where (M B,,(0)) M B,(1) is the marginal benefit given that a subsidy was (not) received.

The analysis of the effects of subsidies is divided into two parts. First, we analyze
the effect of receiving a subsidy on the firm’s R&D activities, i.e., the effect of switching
s from s = 0 to s = 1, and then show the effects of changing the subsidy parameters A

and a.

3.1 Effects of Receiving a Subsidy

Note that the assumption on the timing of events implies that the amount of research
n is not affected by the actual realization of s but it is affected the expected value of
s, A. Put differently, the marginal benefit of n does not depend on s. Thus, receiving a
subsidy can only affect the amount of development.

It is immediately clear from Figure 6 that the reservation cost project increases
when a subsidy is received. Thus, receiving a subsidy increases the likelihood of devel-
oping the project but does not affect research efforts. Thus, one type of subsidy effect is

the increase in the probability of development,

Ap P(d>0|s=1)—P(d>0|s=0)

= Pz} <Z(1)|]s =1) — P(z; <Z(0)]s = 0)

using (10).

Clearly, Ap is positive because (1) > 7(0).%

25 Also, because increases in « increase T(1), but not Z(0), the probability of development increases
when a subsidy is received, and remains unchanged when a subsidy is not received. Thus, Ap increases
with « for given n. Changes in A also affect Ap but only through the change that is induced on n. As
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Of greater interest, perhaps, is the effect of the subsidy on the level of R&D
expenditures. The effect of receiving a subsidy on R&D expenditures depends on the
project’s realized cost x*. Recall that 27 > . Clearly, receipt of a subsidy leads to higher
R&D expenditures if zj is above the reservation values Z(0), but z7 is below Z(1). The
R&D stage would not have been undertaken without the subsidy but will be undertaken
if a subsidy is received. Hence, R&D expenditures change from nb to nb + 7.

On the other hand, if 2§ > 7(0) and z7 > Z(1) receipt of a subsidy does not change
the firm’s decision not to implement the project; R&D expenditures remain at nb.2°

Finally, when the realized cost satisfies z{; < Z(0), development of the project once a
subsidy is received must also be profitable since its costs are decreased. This implies ] <
Z(1). The firm’s change in total R&D expenditures is 7 — zf > 0 because development
would have been undertaken at a cost zj; even if the subsidy was not received. The firm,
of course, profits from the subsidy because its R&D costs are reduced by ax} and this
increases its continuation value. Because the agency deciding on the subsidies usually
does not know the firm’s T’s, the subsidy can be in effect quite unnecessary for those
projects with costs below Z(0).

In short, the above counterfactual comparison of R&D expenditures for a subsidized
project implies that the change in total R&D expenditures is either z7 — z{) when xf <
Z(0) or 7 when zj > T(0) and 27 < T(1). Otherwise, the change is zero.

In applied work, however, one usually compares the average R&D expenditures of

subsidized to non-subsidized projects,

Aggp = E(nb+d|s =1) — E(nb+d|s = 0)

z(1) 7(0)
= / TGer (258 = 1,n)dx — / TGps(z;5 = 0,n)dx (22)
0 0
z(0) z(1)
= / x [gms{(x; s=1,n) = go(v;5 = O,n)] dx +/ TGp: (235 = 1,n)dw
0 7(0)

n increases, T(1) remains fixed but the probability that 27 < T(1) increases. However, the probability
that xf < T(0) also increases with increases in n. The effect of changes in A on Ap is thus ambiguous
and depends on the parameter configuration.

20Tf a subsidy is received but the cost of the project is so high that it is not profitable to undertake
development, the firm can rescind the right to use the subsidy at no additional cost.
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where g,«(-) is the density of z} or x} given in (16).%

The first term captures the increase in average development expenditures of those
projects that would have been undertaken without the subsidy (the average of x} — xf)
while the second term represents the average development expenditures of those projects
that would not have been undertaken without the subsidy.?®

Of course, Arep > 0 because new projects are undertaken when the subsidy is
received and even the projects that would have been developed without the subsidy are
undertaken at a higher level of expenditure. Moreover, because T(1) increases with a,
ARrg p increases with the subsidy share.

A natural question that arises in the analysis of R&D subsidies is their “additional-
ity” effect. Does the subsidy increase total R&D expenditures by more than the amount
of the subsidy? In other words, do own (company-financed) R&D expenditures increase
after receiving the subsidy?

The answer is not obvious because even though there are more projects being
implemented, firms spend only a fraction of what they would have spent on those projects
with costs below the “no-subsidy” reservation cost Z(0). The change in own R&D caused
by the subsidy to a project with costs z{y is (1 — «)z] when zf > Z(0) and z] < ZT(1).
On the other hand, when z§ < Z(0), the change in own R&D expenditures equals (1 —
a)z} — x} which can be either positive or negative.? Comparing, the average own R&D

expenditures of the subsidized projects to that of the non-subsidized projects we obtain,

2TThe density of 27 uses the continuation function (19) evaluated at s = 1. The averages are com-
puted using the population of projects. If we wish to restrict the universe only to projects engaged in
development we need to divide the density of * by the probability of development.

28Because subsidies are randomly assigned in the model, the simple difference in average R&D by
susbidy status is the same as the average effect of the subsidy on the subsidized firms.

2When x§ > 7(0) and z7 > Z(1), the change in own R&D is zero.
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Gep=Emb+(1—a)d|s=1)— E(nb+d|s=0)

The last term in the third row of (23) is the increment to own R&D expenditures in
the projects undertaken as a direct result of receiving the subsidy while the second term
captures the decrease in own R&D due to the subsidization of inframarginal projects,
projects that would have been undertaken even without the subsidy. The subsidy effect
on own R&D expenditures will be positive when « is not “too large”.

To gain more understanding on the forces impinging on the additionality effect we
simulated the effects of receiving a subsidy using the same parameters of the model as
in the previous set of simulations in Section 2.4, except that b = 1.1 as in the bottom
graph of Figure 4.3° The probability of receiving a subsidy is set at A = 0.60 in the top
panel, which is close to the reported 70 percent of all applications receiving a subsidy in
Israel (Trajtenberg, 2000). In the bottom panel, the subsidized fraction of the costs is
set to a half reflecting also the typical subsidy in Israel.

The last two columns in Table 4 show simulated values of Aggp from (22) and of
the additionality effect A%g", from (23). Note that the effect of the subsidy on own R&D
is an order of magnitude smaller than its effect on total R&D expenditures. In Panel A
we observe that, given A\, A%, increases and then decreases with a. This reflects the
trade-off between the positive effect of a higher « on the average change in total R&D
expenditures (Aggp) and the negative effect on own R&D expenditures (—aE(d|s = 1)).

Panel B shows a similar pattern for changes in \.

306 =0.96, ag = 0.08 and a; = 0.10, and ¢ = 1. The uniform distribution is assumed, G(z) = &.
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Table 4: Subsidy Effects

A: Changes in a, A = 0.60
a |n|Pd>0s=1)| Enxb+ds=1)| Aren | ARLH
0.10| 1 0.27 3.94 0.52 0.24
0.20 | 2 0.51 8.25 1.99 | 0.78
0.30 | 2 0.57 9.82 3.56 1.28
0.40 | 3 0.78 15.08 6.38 1.67
0.50 | 3 0.86 18.19 9.50 | 2.05
0.60 | 3 0.94 22.25 13.55 | 2.18
0.70 | 3 0.99 26.60 1791 | 1.59

B: Changes in A, a = 0.50
A n P(d > 0‘8 = 1> E(n)\b + d|S = 1) AR&D %ﬁnD
0.10 | 1 0.48 10.30 6.90 | 2.30
0.20 | 2 0.73 15.48 9.22 2.58
0.30 | 2 0.73 15.50 9.24 | 2.59
040 | 3 0.86 18.19 948 | 2.04
0.80 | 3 0.86 18.19 949 | 2.05
0.90 | 4 0.93 19.70 8.87 | 1.22

3.2 Effects of Changing Subsidy Parameters

Table 4 also shows the effect of varying the subsidy parameters A and « on the amount of
research and on the probability of development (columns (2) and (3)). The effect of A on
n depends on the sign of M B,,(1) — M B, (0) (see (21)). As was the case when analyzing
the effect of ¢ on n, the marginal benefit of research does not necessarily increase when
a subsidy is received, even though the continuation value does. This depends on G(x)
and on the success probability function 7(z). As before, it can be shown that a sufficient

condition that ensures monotonic comparative statics is that 1 — F,(c; s) exhibits strictly

increasing differences in (n, s).

The simulation results in Panel B of Table 4 show that n is nondecreasing in .

That is, higher probabilities of being subsidized increase the optimal number of research
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teams.?! Increases in A lead to increases in n which lead to increases in the proportion
of projects engaged in development simply because more projects become profitable, i.e.
more projects set T(1) as their reservation cost. This also increases R&D expenditures
of the subsidized projects (Column 4). A similar pattern is observed in Panel A when «
varies but note that R&D expenditures increase at an increasing rate with changes in a.
This occurs as changes in « push out Z(1). Thus, for a given probability of subsidization,
changes in « induce increasingly more expensive projects to become profitable to the

firm.32

4 R&D and Productivity Growth

An interesting aspect of the model is the evolution of w and of R&D expenditures over
time and the relationship between them (see Figure 5). It is intuitively clear that the
more frequently the R&D stages are implemented, the larger w will, on average, be. The
connection between the level of R&D expenditures and the technology state, however, is
less obvious.

Conditional on wy, the probability that w increases (by one) is
Pwirr —wp = 1w) = P(d > 0)m(d) = (1-[1-G@)]")7(d)
= p(n7 dt)
because the events {x* < T} and {technical success} are independent.
The probability of overall success p(n, d) embeds both the probability of implemen-

tation and the probability of the purely technical success of the implemented solution.

The expected value of w;,; given wy, n and d; is

E(wiii|w, n, dy) = wi(1 —p(n,dy)) + (we + 1) p(n, dy) (24)
= wy +p(n,dy)

31The discontinuous increase in n is a consequence of the fact that the optimal number of research
teams must be integer-valued. Notice that there are also discontinuous jumps in the proportion of firms
engaging in development when the optimal number of research teams changes.

32 As in precious cases, n does not necessarily increase with a. It will do so is if 1 — F},(c; ) exhibits
strictly increasing differences in (n, «v).
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Note that when d = 0 we have p(n,0) = 0 because 7(0) = 0, so that the R&D
program does not advance when the solutions are not developed. From (24), next period
technological state depends on today’s state and on the probability of developing the
proposed solution and of succeeding. The latter probabilities increase, respectively, with
research and development expenditures so that, ceteris paribus, firms spending more on
R&D should be more advanced in their R&D program.

The connection between the technological state w and output or total factor pro-
ductivity (TFP) is made through the assumption that w affects the productivity of capital
in a Cobb-Douglas production function, and that capital is, for simplicity, fixed at K,

y= (wK) L' (25)

Given w, there is no interaction between the choice of L and the R&D policy so
these two aspects of the optimal firm policy can be analyzed separately. The profit of a

price-taking firm, gross of its R&D expenditures, is linear in w,

Kw = ¢w

N J/
-~

¢

1—1
profit =pip, " (1—7)7 ] i

where p is the price of the final product and p; is the wage rate.
Observe from (25) that the level of total factor productivity is w” so that, using
(24), we obtain

E(InTFPq|wi,n,d) = E(ylnwg|we,n,d)
= ylnwy(l —p(n,d;)) +vIn(w; + 1) p(n, dy)

1
= vlnw;+7In (1 + w_> p(n, dy)

t
vp(n, dy)
Wy

Q

InTFP, +

The expected growth rate in TFP, conditional on lagged TFP level and on research

and development expenditures, is

E(AWTFPwin, de) = Lp(n, ) (26)
t

_ ¢p(n’ dt)

St
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using sales s; = py; = %wt.

Note that because success probability function p(-) is bounded by one doubling
R&D expenditures will not always double expected output. Thus, this model echoes
Jones’s (1995) critique of the presence of “scale effects”—that the growth rate of the
economy is proportional to the size of the resources devoted to R&D-in R&D-based
growth models.

In particular, because of the fixed unit increment in w and the boundedness of p(-),
the growth rate in the technology state of the more advanced firms should be lower, on
average, than that of the less advanced firms, controlling for R&D expenditures. In other
words, firms grow faster when they are smaller (in terms of w or sales) implying some
convergence in technology levels as in the model of Jovanovic and MacDonald (1994) but
for different reasons.

We can also use the model to interpret the established empirical tradition of re-
gressing total factor productivity (TFP) growth on an R&D-to-sales ratio and other

regressors,

R&D
Sales

The parameter p is interpreted as the rate of return to R&D. The conceptual frame-

AInTFP=p ( ) + controls + error (27)

work underlying this procedure, presented in Griliches (1979), relies on the existence of a
production function relating output to classical inputs and to “knowledge”. Knowledge,
in turn, is the result of past investments in R&D thereby establishing a link between
R&D expenditures and output (sales). The estimated rates of return to R&D are, in
general, significantly positive (see Griliches, 1998) and large (the selected estimates in
Jones and Williams (1998) are between 30 and 100 percent).

Our model provides a sounder theoretical basis for this empirical approach, em-
phasizing the within-firm dimension of technological progress and complements recent
work on the social rate of return to R&D obtained in a growth model where knowl-
edge spillovers, congestion externalities and creative destruction are allowed (Jones and
Williams, 1998).

The question we want to address is the following: In light of the population regres-
sion equation (26), what is the parameter p in the estimated regression equation (27)
capturing? Suppose we have a sample of R&D-doing firms—firms that are doing research

and development. Then,
7(dy)

St

E(AIMTFP |wy,n,d, >0) = ¢

(28)
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because x* < T with probability 1 for these firms.

Using a linear approximation to 7(d) around E(d) in (28) we obtain,

E(AWMTFPy|w,n,dy > 0) = ¢W(i(d)) + ¢7T,8<d) (d, — E(d))
| E@) - w’id) [nb + B(d)] ¢7r'8(d) b+ d)
1, ~ (R&D
- SOs_t +M (sales)t

p

where d is a point between d;_; and E(d) and ¢ = ¢m(E(d)) — 7'(d) [nb + E(d)] .
Recall that the continuation value is C(z) = ﬁ(ir(_xﬁ);’j — 2. Thus p = ¢'(d) reflects
the short-run (one-period, not discounted) gross return to development expenditures.®?

5 Conclusions and Extensions

This paper attempts to penetrate the “black box” of technology making. We develop
a dynamic model of R&D at the project level and draw testable implications from it.
A main feature of the model is the clear distinction between research and development
activities. Research generates ideas with different costs and probabilities of success,
development implements the most profitable among them. This formulation of the R&D
process produces a non-linear relationship between R&D inputs and output: when the
cost of development is too high, the firm postpones development. Research, however, is
always conducted with the hope of generating profitable, implementable ideas.

The model also provides a theoretical framework for analyzing the impact of R&D
subsidies and illustrates that the only meaningful magnitude to analyze is the “addition-
ality effect”: the change in the amount of company-financed R&D caused by the subsidy.
Whether this effect is positive or negative depends on the parameters and distributional
assumptions. It is, therefore, an empirical matter. An additional important feature
of the model is that can be used to cast light on the R&D-productivity relationship
and to interpret anew the meaning of the parameter usually estimated in micro-level

productivity regressions.

33Note also that one of control variables in the estimated regression should be (inverese) sales or size.
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Although the present model imposes several simplifying assumptions, it captures
many salient features of R&D activities. The limitations of the model can, of course,
be overcome by extending the model in several directions. First, the model implies that
sales are one-to-one with the technological state w and, therefore, monotonically increase
over time. There are no fluctuations in sales. This can be amended by abandoning the
assumption of a known demand (prices) and allowing current period returns, or ¢, to be
stochastic.

Second, the amount of research n does not depend on the state w. This can be
overcome by specifying the probability of successful development 7 to depend also on the
technological state, i.e., 7(z,w). Assuming positive but decreasing marginal returns to w
will capture a learning-by-doing effect. That is, success comes easier to more successful
firms but after the easier stages have already been implemented, the R&D technical
problems become harder and the probability of success increases at a decreasing rate
(see Kortum, 1997; Bental and Peled, 1996). In this case, the reservation cost is likely to
increase with w (at least up to some level of w) implying more development expenditures
as the project grows over time. On the other hand, firms will invest more in research
n at the early stages of their projects because the marginal increase in 7 is larger the
smaller is w. The learning-by-doing assumption, therefore, will produce richer dynamics.

Another interesting extension of the model is to endogenize the cost of research b
by introducing a labor market for scientists and engineers. The parameter b will then
reflect the equilibrium wages in this market. The implications of this general equilibrium
extension can be significant when analyzing the effect of subsidies that stimulate R&D
because additional R&D puts pressure on the market for scientists and engineers leading
to increases in their wages. These increases in wages can lead to a reduction in R&D
activity thereby undoing part of the initial R&D subsidy effect.

Further, the probability of receiving a subsidy can be made to depend on the
development expenditures z* and on the technological state w. While doing this will
impart a dose of realism to the model, the nature of the relationship between the subsidy
probabilities and (previous) successes, size, or proposed budget is far from obvious and
there is not much empirical guidance on this matter. In any case, this extension will
allow researchers to deal with issues such as the effectiveness of R&D subsidies to “small”
and “large” firms, to successful or unsuccessful ones, etc.

Lastly, the issue of spillovers between research teams within the firm (program) has

been deliberately ignored. This is undoubtedly important as it bears upon the internal
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organization of research at the firm. Spillovers across firms is also crucial not only for
the empirical evaluation of the benefits of the subsidy program, but also for the design
of the optimal subsidy parameters: in the absence of positive externalities across firms it
is best not to have a subsidy program at all. Thus, the next step should be to introduce

spillovers into the model.
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Appendix 1: Distribution of ¢(w,2*)
Because C/(w,z*) is the n'* order statistic from the random sample {C}, ... ,C,}

where C; = C(w, x;), its distribution function is

where

From Figure 1 in the text we observe that the distribution of C; can be expressed

as

P(C; <c)= / g(x)dx
{z:C(w,z)<c}

z7 () 00
/ x)dx + / g(x)dx
zt(c)

G(z7(0) + 1= G(z7(c))

where g(x) is the density of  and 7 (¢) and x*(c) are, respectively, the minimal and
maximal roots of the equation C'(w,z) = ¢. Note that 27 (c) < Z(w) < 21 (¢).
We then have,

F.(c) = [1 + Gz (¢) — G(:L"J’(c))}n
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Appendix 2: Proof of Proposition 1
Let W(w) = Aw + B be a candidate value function. We will check that, for
some parameters A and B, W (w) satisfies the functional equation (6). From (4), the

continuation value is

Clw, ) = Br(z) W(w+1) - W(w)] —
= fOn(z)A—=z

which we write as C(w, x) = C(z) because it does not depend on w,

The maximizer of C'(x) satisfies 57'(Z)A = 1, and we have C= pBm(z)A — T, while
x~(c) and 27 (c) are, respectively, the minimal and maximal roots of SA7T(z) — 2z —c =0,
which do not depend on w. Using these values of C, 2~ (c) and z*(c) note that the

solution value of n to the following problem

¢
Max (—nb + /0 c[1+G(z (¢) — Gz (c)]" dc) =B (29)

1
W 1-8

does not depend on w (but depends on A) because the value of the integral does not
depend on w.

Defining B as the maximum value in (29) and A = % we have that the function
W (w) satisfies

Ww) = Aw+ B
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Appendix 3: Proof of Proposition 2

P roof. Rewrite the value function in Proposition 1 as

V(w) = MazW(w,n),

¢
W(w,n) = T3 (¢w—nb+/ﬂ an(c)dc>

Using an “envelope theorem” type of argument we obtain

oV (w) W(w,n*)  oC 9C . C OF,.(c)
(1—5)a—¢—(1—5)8—¢—w+8—¢—6—¢1’n*( )—/0 8—¢d
B ¢ OF,+(c)
=w —/0 2 dc
C
=w+ / n*Fn_1(c) OH(c) dc
0

99

using (9), where n* is the optimal n and 0 < H(c) = G(z7(c)) — G(z~(¢)) < G(T) is
decreasing in c.

As ¢ increases, the curve C(x) shifts up. At any given ¢, therefore, the smallest
root of the equation C'(z) — ¢ = 0 decreases whereas the largest root increases, i.e., 7 (c)
decreases while x7(c) increases. Correspondingly, H(c) increases with ¢ and therefore
AV (w) V()

55 > 0 Analogously, we have == > 0. =
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Appendix 4: Parameter Monotonicity

The expected continuation value was defined in (7) as

EC(n,¢) = E(C(z")[C(z") = 0,n,¢) (1 = F,(0))
omitting the argument w and using (10).

Definition 1 The function EC(n, ) exhibits strictly increasing differences in (n, @) if
for all pairs (ny, ;) and (na, @), and given w, it is the case that ne > ny and ¢, > ¢
imply

EC(ng, ¢y) — EC(n1, ¢y) > EC(ng, ¢1) — EC(n1, ¢4) (30)

Lemma 1 If EC(n,¢) exhibits strictly increasing differences in (n, ¢), then n is a non-

decreasing function of ¢.

P roof. Let n; be optimal for ¢,, and let ny be optimal for ¢,. Optimality means
that

n; = arg Maz (pw —nb+ EC(n,,))

fori =1,2 . Let the objective function—the term in parenthesis—-be W (w, n, ¢). Optimal-

ity implies
W(w7n2a ¢2) - W(w7n1a ¢2) Z 0 Z W(w7n27 ¢1) - W(w7n1a ¢1)

which implies

EC(na, ¢g) — EC(n1,¢y) > EC(n2, ¢1) — EC(n1, ¢1) (31)

Without loss of generality let ¢, > ¢,. Suppose ny < n;. Strictly increasing differ-

ences imply
EC(nb ¢2) - EC(”QJ ¢2) > EC(nla (rbl) - EC(”Qv ¢1)
which directly contradicts (31). Thus, no >n; =
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Lemma 2 A sufficient condition for EC(n,¢) to exhibit strictly increasing differences

in (n, @) is that 1 — F,(c; ¢) exhibits strictly increasing differences in (n, ).
P roof. Let ny > n; and ¢y > ¢;.

EC(ng, ¢9) — EC(n1,¢y) > EC(ng, ¢1) — EC(n1, ¢4)

<= EC(ng, ¢y) — EC(ny, ¢1) > EC(n1,¢,) — EC(ny, ¢1)
C(41) C(42) C(¢1) C(2)
— / F,,(c,¢y)dc — /0 F,,(c, ¢)dc > /0 F,, (¢, ¢y)dc — /0 F,, (¢, ¢y)dc

C(¢2
- / Fon (e, ) — Fonle,y)} de

C(¢1
n / {Fas(€:61) — Foy(c: )} — {Foy (€ 61) — Fun (e )} de > 0

Note that the first integral is always positive because F,,(c) decreases with n. A
sufficient condition for the second integral to be positive is for the integrand to be positive

at every c. This occurs whenever

{Fnz(ca ¢1) - Fnz(ca ¢2)} - {Fnl (Ca ¢1) - Fn1(ca ¢2)} >0
— {Fnl (Ca ¢2) - Fnz(cv ¢2)} - {Fnl (Ca ¢1) - Fnz(cv ¢1)} >0

— {[1 - Fn2(c7 ¢2)] [ - nl(c ¢2)]} > {[ nz(c ¢1)] [ - Fnl(c’ ¢1)]}

which is equivalent to 1 — F),(c; ¢) exhibiting increasing differences in (n,¢) m

Note that this is just a sufficient condition.
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