

The Role of Natural Gas in Sustainable Transportation

Dr. Miriam Lev-On Dr. Perry Lev-On The LEVON Group, LLC

SNI Energy Forum, 29 April, 2013

Climate Policies for Road Transport

- Sustainable Low Carbon transportation is emerging as a focus area for longer term action (post-Kyoto)
- Alternative fuels, technologies and transport modes are being introduced to reduce the carbon intensity of the transport sector
- Current climate policies for road transport:
 - Target fuel producers and/or car manufacturers, and
 - Influence use of alternative fuels, technologies and modes
- With emerging new fuel supply chains, carbon intensity of fuels and energy efficiency of vehicles, an integrated policy of consistent measures is essential
- Vehicles are best regulated in terms of energy usage per distance travelled without specifying fuel type
- A sustainable transport system ought to be evaluated in terms of its total emissions

Three Main Factors Contribute to Emissions from Transportation

Source: Energy Policy, Volume 39, May 2011, Pp. 2396-2406

Efficiency and Intensity of Different Fuels

Source: Energy Policy, Volume 39, May 2011, Pp. 2396-2406

Focus on Natural Gas Vehicles

- The number of natural gas vehicles (NGVs) continues to grow – yet still a niche market
 - Less than 1% of world road fuel consumption
 - Less than 1% of world gas demand
- Natural gas can play a significant role in reducing vehicle CO₂ emissions
 - Biogas or bio-synthetic gas are especially important for cutting emissions from heavy-duty vehicles (HDVs)
- Vehicle and fuel technology for natural gas is available today and is relatively affordable, particularly in comparison with other alternative fuel vehicles (AFVs)

Global Gas

Top nations in 2010 with vehicles powered by natural gas, in millions (and percentage of those vehicles among all vehicles in the country)

Note: Vehicle numbers include motorcycles and mopeds Source: NGV Global

Role of NGV in "Green" Development

- Replacing a typical older inuse vehicle with a new NGV provides the following reductions in exhaust emissions
 - CO by 70%-90%
 - Non-Methane Volatiles by 75%
 - NOx by 75%-95%
 - CO2 by 20%-30%
- Biogas (bio-methane) significantly lowers carbon emissions compared to diesel fuel for heavy duty vehicles (HDVs)
- NGVs can also provide a pathway to hydrogen fuel

Natural gas: good CO₂ performance

Greenhouse gas emissions, grammes of CO₂ equivalents perkilometre driven*

** Benchmark vehicle: petrol engine with fuel consumption of 7 litres per 100 kilometres.

Source: Deutsche Energie-Agentur

Natural Gas Transportation Benefits

- The benefits of using natural gas as a transportation fuel depends on specific local circumstances
- Natural gas can be competitive with gasoline where transmission and distribution grids are present
- Main benefits include:
 - Improving urban and regional air quality
 - Reducing noise in urban areas
 - Reducing the domestic consumption of petroleum products
 - Improving energy security

Projected World NGV Growth to 2030 [business as usual scenario]

Types of Natural Gas Vehicles

- There are three types of NGVs:
 - <u>Dedicated</u>: These vehicles are designed to run only on natural gas
 - <u>Bi-fuel</u>: These vehicles have two separate fueling systems that enable them to run on either natural gas or gasoline
 - <u>Dual-fuel</u>: These vehicles are traditionally limited to heavy-duty applications, have fuel systems that run on natural gas, and use diesel fuel for ignition assistance
- Light-duty vehicles: typically dedicated or bi-fuel modes
- Heavy-duty vehicles: typically dedicated or dual-fuel modes
- Natural gas can be stored in tanks as CNG, or LNG
- Energy density of LNG is greater than that of CNG
 - LNG is well-suited for Class 7 and 8 trucks that need a greater range
- Dedicated NGVs demonstrate better performance and have lower emissions than bi-fuel vehicles

Barriers to NGVs Introduction

- Limited models and sizes of vehicles
 - More bi-fuel pick-up trucks are being introduced in 2013
- Slow development of engines of different sizes and applications
- Fuel availability and insufficient fueling stations to secure longer driving ranges
- Poor performance of retrofitted vehicles
- Persistent perception of natural gas safety issues

Natural Gas

Case Studies: U.S. Vehicle Fleets

UPS

- Colorado and California CNG vehicle: more than 1,100 trucks.
- Along West Coast close to 60 LNG powered trucks,
- Since 2000, UPS "green fleet" traveled more than 165 million miles:
 - CO 75% lower
 - NOx 49% lower
 - CO₂ 7% lower

AT&T

- Invested \$565 million in the last 10 years to replace about 15,000 fleet trucks with alternative-fuel vehicles - more than half powered by CNG
- Plans to purchase around 6,000 additional CNG vehicles over the next five years.
- AT&T's alternative fuel vehicle initiative:
 - Reduced CO₂ by 211,000 metric tons
 - Saved the company 49 million gallons (190 million liters) of gasoline over the 10-year deployment period.

Case Studies: Public Transportation

Los Angeles Metropolitan Transit Authority

- The transit bus system has nearly 400 million annual passenger boardings, and 1.5 billion miles a year.
- It experimented with Methanol and Ethanol buses that proved too corrosive for bus engines
- In 2011 it switched completely to CNG engines, reducing particulate emissions by 80%
- It runs today 2,221 CNG buses, 1 electric and 6 gasoline-electric hybrid buses in its fleet.
- CNG buses cost about 10 to 15% more to operate than standard diesel engine buses, due to maintenance costs
- The county saves about \$40 million in fuel costs every year because the price of natural gas sold as transportation fuel is less than diesel.

Lithuanian CNG Bus Fleet Expansion

- New CNG buses with roof-mounted cylinders made from special composite material with a total capacity of about 1,300 liters of gas.
- The CNG engines meet Euro 5 and EEV standards.
- Scheduled bus service life 15 years and 1.5 million kilometers.

Case Study: Biomethane Trucks

French Supermarket Chain Carrefour

- Testing trucks that will be running on bio-methane fuel produced using waste from 15 stores in the Lille region of France
- They will use an innovative methanization process that includes transformation of organic waste to bio-methane to power the delivery vehicles
- Using this new mode of transport will
 - Reduce emission levels by 80%,
 - Cut noise pollution in half,
 - Stop emissions of fine particles, and
 - Address the problem of food waste
- Truck characteristics:
 - Operating range: 400 to 600 kms
 - Engine power: 330 hp (for 42/43 tons)
 - Can carry a payload of 25 tons, as same size conventional fuel vehicle.

In Summary

- Emissions from the transportation system are due to three main factors:
 - Type of fuels,
 - Energy intensity of the vehicle system, and
 - Total distance travelled
- As discussed, different policy instruments are required to address each of these factors
- The benefits of using natural gas as a transportation fuel depends on specific local circumstances

Thank you for your attention

Contact Information The LEVON Group, LLC <u>levon@levongroup.net</u>

