Lecture Notesin

- Computer Science

A. Segall S. Zaks (Eds.)

Distributed Algorithms

6th International Workshop, WDAG 92
Haifa, Israel, November 1992
Proceedings

' Springer-Verlag

{7

Lecture Notes in Computer Science 647
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D, Gries . Stoer

A. Segall S. Zaks (Eds.)

Distributed Algorithms

6th International Workshop, WDAG ’92
Haifa, Israel, November 2—-4, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos Juris Hartmanis

Universitiit Karlsruhe Cornell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessnitz-Strafle 1 5149 Upson Hall

W-7500 Karlsruhe, FRG Ithaca, NY 14853, USA

Volume Editors

Adrian Segall

Shmuel Zaks

Department of Computer Science, Israel Institute of Technology
Technion, Haifa 32000, Israel

CR Subject Classification (1991): F.1,D.1.3, F2.2,C2.2,C2.4,D44-5

ISBN 3-540-56188-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-36188-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilins or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

The Sizth Workshop on Distributed Algorithms (WDAG 92) took place on Novem-
ber 2-4, 1992 in Haifa, Israel. WDAG is intended to provide a forum for re-
searchers and other parties interested in distributed algorithms and their appli-
cations. The aim is to present recent research results, explore directions for future
research, and identify common fundamental techniques that serve as building
blocks in many distributed algorithms. WDAG 92 follows five successful work-
shops in Ottawa (1985, proceedings published by Carleton University Press),
Amsterdam (1987, see Lecture Notes in Computer Science (LNCS) 312), Nice
(1989, LNCS 392), Bari (1990, LNCS 484) and Delphi (1991, LNCS 579).

Papers were solicited describing original results in all areas of distributed
algorithms and their applications, including distributed graph algorithms, dis-
tributed combinatorial algorithms, design of network protocols, routing and flow
control, communication complexity, fault-tolerant distributed algorithms, dis-
tributed data structures, distributed database techniques, replica control proto-
cols, distributed optimization algorithrns, mechanisms for safety and security in
distributed systems, and protocols for real-time distributed systems.

The 24 papers were selected by the Program Committee from 38 submit-
ted papers. The selection was based on perceived originality and quality. The
selection process was carried out via email, using a scoring analysis program
(courtesy of Robert Schapire, of AT&T). It is expected that the authors will
prepare extended versions of the papers appearing in this proceedings, to be
submitted for refereed publication in one of the scientific journals, The Program
Committee wishes to thank all who submitted papers for consideration.

The Program Committee consisted of

L. Bougé (ENS Lyon) A. Segall (co-chair, Technion)
D. Dolev (Hebrew U. and IBM Almaden) P. Spirakis (CTI and Patras U.)
S. Kutten (IBM) G. Tel (Utrecht U.)

M. Merritt (AT&T) S. Toueg (Cornell U.)

N. Santoro (Carleton U.) J. Welch (U. of North Carolina)
A. Schiper (EPF Lausanne) S. Zaks (co-chair, Technion).

We wish to express our gratitude to all members of the Program Committee
for their cooperation and to the referees who assisted them (see appendix for
list).

We wish to thank the Department of Computer Science, Technion for plac-
ing at our disposal the best professional assistance it can offer. Judith Tamari
did an excellent job in organizing the conference and putting the proceedings
together, and Aythan Avior - in handling the computer work and adapting the
scoring analysis program to WDAG needs. Our deepest thanks go to them both.
We would also like to thank David Cohen of the S, Neaman Institute for his
expetienced help and advice.

Vi

The §. Neaman Institule selected WDAG 92 as the first workshop to receive
sponsorship under the newly-established program to support scientific meetings
related to research carried out at the Technion. On behalf of all Workshop partic-
ipants and the entire Distributed Algorithms scientific community, the Workshop
Steering Committee and Co-Chairmen would like to express their deep appreci-
ation to the §. Neaman Institute for this support.

Haifa, November 1992 Adrian Segall
Shmuel Zaks

The 8. Neaman Institute
for Advanced Studies in Science and Technology

The Samuel Neaman Institute for Advanced Studies in Science and Technology
is an independent public-policy research institute, established in 1978 to assist
in the search for solutions to national problems in science and technology, edu-
cation, economy and indusiry, and social development. As an interdisciplinary
think-tank, the institute draws on the faculty and staff of Technion, other insti-
tutions and scientists in Israel, and specialists abroad. The Institute serves as a
bridge between academia and decision makers through research, workshops and
publications.

The Institute pursues a policy of inquiry and analysis designed to identify
significant public policy problems, to determine possible courses of action to deal
with the problems, and to evaluate the consequences of the identified courses of
action.

As an independent not-for-profit research organization, the Institute does
not advocate any specific policy or embrace any particular social philosophy.
As befits a democratic society, the choices among policy alternatives are the
prerogative and responsibility of the elected representatives of the citizenry. The
Samuel Neaman Institute endeavors to contribute to a climate of informed choice.

The Institute undertakes sponsored advanced research, formulates invita-
tional workshops, implements continuing education activities on topics of signif-
icance for the development of the State of Israel, and maintains a publications
program for the dissemination of research and workshop findings. Specific topics
for research may be initiated by the Institute, researchers, government agencies,
foundations, industry or other concerned institutions. Each research program un-
dertaken by the Institute is designed to be a significant scholarly study worthy
of publication and public attention.

Table of Contents

Sparser: a paradigm for running distributed algerithms
Y. Afek, M. Ricklin. i 1

Closed schedulers: constructions and applications to consensus protocols
R. Lubitch, §. Moran..........ooouieiiiiiirniiii i i 11

Efficient atomic snapshots using lattice agreement
H. Attiya, M. Herlihy, O. Rachman................ ... 0. iiiiiiininn, 35

Choice coordination with multiple alternatives
D.S. Greenberg, G. Taubenfeld, D.-W. Wang...............cccooiiinn 54

Some results on the impossibility, universality, and decidability
of consensus
P Jayanti, 8. TOUEH. ...ttt ittt e 69

Wait-free test-and-set
Y. Afek, E. Gafni, J. Tromp, PM.B. Vilanyi....................c.covts 85

A concurrent time-stamp scheme which is linear in time and space
A Israeli, M. Pinhasov.o uinini ity 95

Tentative and definite distributed computations: an optimistic
approach to network synchronization
J. Garofalakis, 5. Rajsbaum, P. Spirakis, B. Tampakas................. 110

Semisynchrony and real time
S. Ponzio, R. Strong ...y e e e 120

Optimal time Byzantine agreement for £ < n/8 with linear messages
A. Zamsky, A. Israeli, 5.5, Pinder...........iiiiiiiiiiiiinnirnareiaias 136

A continuum of failure models for distributed computing
JA. Garay, K.J. Perry....oooi ittt aiiiiiiienansons 153

Simulating crash failures with many faulty processors
R. Bazzi, G. Netger. ..ot ia e i enans 166

X

An efficient topology update protocol for dynamic networks
B. Awerbuch, Y. Mansour. ... i e 185

Memory adaptive self-stabilizing protocols
E. Anagnostou, R. El-Yaniv, V. Hadzilacos............................ 203

Optimal early stopping in distributed consensus
P. Berman, JA. Garay, K.J. Perry......cooiiiiiiiiiiiniiienrannans 221

Traffic-light scheduling on the grid
G. Kortsarz, D, Peleg .. .ooiiviiiiiiniiiiiieiiieiiannrinnirerennss 238

Distributed computing on anonymous hypercubes with faulty
components

E. Kranakis, N. Santoro........cooiiiiie i iiiiiiiaeeaennnans 253

Message terminate algorithms for anonymous rings of unknown size
L Cidon, Y. Shauill.ttt e i ciaiiin s iraeannnns 264

Distributed resource allocation algorithms
JoBar-Ilan, D. Peleg.... ..ot aiine e 277

Membership algorithms for multicast communication groups
Y. Amir, D. Dolev, §. Kramer, D. Malki 202

The granularity of waiting
J.H. Anderson, J.-H. Yang, M.G. Goudacocvviiinns, 313

The cost of order in asynchronous systems

A. Ricciardi, K. Birman, P. Stephensoncccvviiiiininn.n. 329
Efficient, strongly consistent implementations of shared memory

M. Mavronicolas, D. Roth......... i, 346
Optimal primary-backup protocols

N. Budhiraja, K. Marzullo, F.B. Schneider, S. Toueg....«............. 362
List of Referees.o.oviiiiiiiiii ittt i sin e e ranneas 379

List of Authors.ovuiriiiiii it i ittt ettt rnssanaanens 380

Sparser: A paradigm for running distributed
algorithms

Yehuda Afek"? and Moty Ricklin?

1 Computer Science Department, Tel-Aviv University, Ramat-Aviv 69978 Israel.
2 ATLT Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974,

Abstract. This paper introduces a transformer for improving the com-
munication complexity of several classes of distributed algorithms. The
transformer takes a distributed algorithm whose message complexity is
O(f-m) and produces a new distributed algorithm for the same problem
with O(f - nlog n -+ m log n) message complexity, where n and m are the
total number of nodes and links in the network, and f is an arbitrary
function of n and m.

Applying our paradigm to the standard all shortest paths algorithm [15,
16, 22] yvields a new algorithm which solves the problem in G(n®logn)
messages (The previous best that we know of is O(m - =) messages).
When applied to the O(m - polylogn) breadth-first search algorithm of
Awerbuch and Peleg [8] our paradigm yields an O(m + n - polylogn)
messages algorithm,

1 introduction

One way to run a distributed algorithm is to collect all its inputs to one node,
run a sequential algorithm on all the inputs at this node, and then distribute
the outputs to the nodes. For many applications this is inefficient, since the
message complexity of such a process is usually bounded by @(nm) messages,
where n and m are the total number of nodes and links in the network. For most
applications, truly distributed algorithms which keep the inputs and outputs of
every node only at that node, are more efficient. In this paper we observe that
an intermediate combination of the two approaches yields distributed algorithms
that are sometimes more efficient than any of the two extremes.

The idea of our technique is to use a particular partition of the network
into subsets of nodes, and select a center in each set. BEach center simulates the
algorithm execution on behalf of each node in its set. That is, messages sent in
the original algorithm between pairs of nodes in the same set are eliminated.
On the other hand, a message sent, from a node in one set to a node in another
set, is now sent from the center of the first set to the center of the other set.
The algorithm is based on the existence of a partition such that the intra cluster
communication, and the radius of every cluster, are small. The existence of a
suitable partition was constructively proved by Awerbuch and Peleg in [21, 10].

The main contribution of this paper is a distributed algorithms transformer
that reduces the message complexity of many distributed algorithms from O(f -

2

m) to O f-nlogn+mlogn) message complexity, where f is an arbitrary function
of n and m. Perhaps one of the most prominent examples where such a technique
might be useful is the all pairs shortest paths problem. A distributed algorithm
to solve this problem is repeatedly executed all the time in the ARPANET
and in other networks (ARPANET [19] and others e.g. [18]). In this problem a

‘routing table at each node, with one entry for each other node in the network is
computed. Node u’s entry in node v’s table contains the length of the shortest
path from v to « and the name of the first link on this path. This information
is used in order o rout data messages between nodes.

Though the worst case message complexity (O(mn)) of the all pairs shortest
paths problem has not been improved for several years, this fundamental task
has been the subject of many papers [15, 19, 18, 14, 20, 16, 22, 11, 23]. This
paper produces an O(n®logn) messages distributed algorithm for the all pairs
shortest paths problem (from scratch, i.c., including the construction of the
sparse partition).

Another immediate corollary of this paper is a O(E +nlog® n) messages BFS
algorithm by executing the Q(E - log® n) messages algorithm of Awerbuch and
Peleg [8] in our framework. The message complexity of BFS has drawn consid-
erable attention in recent years; In 1982 Gallager gave an O(n?) messages algo-
rithm [16], in 1985 Awerbuch and Gallager gave an O(E°) messages algorithm
[6], and in an earlier draft of this paper we have presented an O(E+/logn +nf)
messages algorithm [3]. A break through in the message complexity of BFS has
been recently reported by Awerbuch and Peleg in their elegant work [8] where
an O(E -log® n) messages algorithm is given. Being aware of our technique Awer-
buch and Peleg have also pointed out in [8] that the combination of [3] and [8]
gives an O(E + nlog®* n) messages algorithm.

Furthermore, as suggested by our paper, once such a partition exists in the
network other algorithms could be run more cfficiently, e.g. the DFS in O(n logn)
messages, by applying our technique to the algorithm of [5].

We believe that the above discussion shows that the sparser technique belongs
to the set of elementary tools in disiributed computing, such as the snapshot
[12], the termination detection of diffusing computation [13] the synchronizer
[4, 9], the resource controller [2], and the reset procedure [1], which are used as
building blocks in the design and implementation of other algorithms.

The rest of the paper is organized as follows: Section 1.2 gives an overview,
Section 2 describes the sparser, which is the structure over which the simulation
is performed, and in Section 3 the basic simulation technique is presented. In
Section 4 extensions of the technique are presented.

1.1 Relation to other works

Our work uses a particular partition from the sparse graph partitions of [10] and
combines it with a simple new idea: let the centers of clusters in the partition do
the work for all the nodes in their cluster (computation and communication). It
is important to note that most known partitions {e.g. synchronizer vy, and {7])

3

would not yield any savings in the communication complexity with the above
idea. '

Our usage of the sparse graph partition is somewhat different from the ap-
plications introduced by Awerbuch and Peleg [10, 9] for tracking mobile users,
constructing compact routing tables, and synchronizer. Technically all their ap-
plications use the partitioning to localize global information in a hierarchical
way.

A seemingly similar idea was presented in [7], where a network is partitioned
into clusters and a problem is solved by first solving it in the subnetwork of each
cluster and then piecing together the partial solutions. This is in contrast to
our technique where the centers of the clusters continuously communicate and
cooperatively solve the problem in a distributed manner. Moreover, [7] is geared
towards reducing the locality of a given problem while we are concerned with
the message complexity of distributed algorithms.

1.2 Overview

The central idea in this paper is to execute distributed algorithms by commu-
nicating only between the nodes of a subset of the nodes. That is, to partition
the network into a number of subsets of nodes, each with a distinguished cen-
tral node, and establish a simple path connecting the two central nodes of each
pair of neighboring subsets. To run the algorithm each central node executes the
algorithm for each node in its subset. Whenever a message is sent from a node
in one subset to a subset of the nodes in another subset, that message is sent
between the corresponding centers. Thus the cost of sending a message from one
node to all its neighbors is bounded by the number of subsets in which the node
has neighbors, times the distance between two centers.

In order for the execution of a distributed algorithm to be communication
efficient, the partition should have special properties. Roughly speaking, the sum
aver all nodes v, of the number of subsets in which v has neighbors, should be
small (e.g. O(n)), and second, the radius of the connected graph spanning each
subset must also be small (e.g. O(logn)). The next section defines the structure
of such a partition, and the section after specifies the simulation technique more
precisely.

2 The sparser

Following [21, 10] we give in this section some necessary basic notations.

Let G = (V,E) be an undirected graph. For two vertices u,w € V, let
dist(u,v) denote the number of links on a shortest path from u to v in G. Define
the radius of a graph to be

Rad(G) = minyev (mazyev dist(u, v))). (1)
For a set of vertices 7 the neighborhood of U is
rU) = vu{s|(v,u) e EAueU}. (2)

4

Given a set of vertices C C V, let G(C) denote the subgraph induced by C'in G.
A cluster is a set C C V such that G{(C) is connected. A set P is a partition
of V if P is a set of pairwise disgjoint nonempty sets and UP = V. The elemenis
of a partition are called cells. For a node v € V we define A,(P), the degree of
v relative to P, to be the number of cells in P which are at distance 1 or less
from v. Formally:

A.(Py= |{Plve I'(P),P € P}l (3)

Let the density [21] of a partition P be:

dens(P) = 3 |I(P)| (:) AU(P)) - (4)

PeP vEV

Definitionl. A sparser is a pair (C,P) where C is a collection of clusters
{C1, Ca, ..., Ci} and, P is a partition {P1, P,..., P} of V, such that:
Vie{l,... ,k}{P CC;A(Vj# i) P; € C))}. That is, each cell of P is covered
by exactly one cluster of C.

The density and radius of a sparser (C,P) are defined as follows:
dens(C, P) = dens(P) (5)
Rad(C,P) = mazcec(Rad(G(C))) (6)

A sparser whose density is d and radius r is an (r, d)-sparser.

Constructing the sparser: Awerbuch and Peleg gave a sequential algo-
rithm for constructing a (z, n'*1/#)-sparser, # integer [10, 21]. Extending this
algorithm to a distributed algorithm with message complexity O(m +n - z) is
straightforward using the standard DFS and BFS techniques. Moreover, the dis-
tributed implementation readily produces the following additional structures:
distinguishes a center in each cluster and constructs a breadth-first search tree
spanning each cluster, rooted at the center. Each pair of neighboring cells selects
one inter-cell link, called the preferred fink. The collection of breadth-first search
trees and the preferred links is the structure spanning the network that is used
by our simulation to pass messages between centers (similar to synchronizer ¥
in [4]). All of this is achieved with the same message complexity, O(m +n - 2).

3 The simulation technique

Assuming that an (v, d)-sparser (C,P) is given in the network, the sparser sim-
ulation technique proceeds in three major steps: First, collect the topological
information of all the nodes in each cell in P to the center of the cluster that
covers the cell. This information includes the identity of all the cells that are
incident to nodes in the cell and the links leading to these cells. Second, simu-
late the algorithm by exchanging messages between the center nodes. Third, the
outputs of the algorithm are distributed by the center of each cell to nodes in
the cell along the breadth-first search tree. The crucial step is the second step in

5

which centers have to exchange messages on behalf of their nodes. The first step
requires O(rm) messages since information about m links is sent to distance r
(assuming the topological information dominates the size of the input data to
the algorithm). If the size of the output of the algorithm at each node is ab
most O(ylogn) bits, then the third phase, the output distribution phase, costs
Ofyrn) messages.

To describe the simulation let us define a cycle of computation for an asyn-
chronous distributed algorithm. A distributed asynchronous algorithm proceeds
at each node in cycles of three steps; (1) message receipt, (2) local computation
of a new local state, and (3) message transmission to a subset of the neighbors.
(Some cycles might consist only of steps 1 and 2.)

Lemma 3 considers asynchronous distributed algorithms in which nodes in
the third step of each cycle send either the same message to all their neighbors,
or a message to only one neighbor, or no message at all. Call such distributed .
algorithms type & distributed algorithms. (Lemma 10 is Section 5 consideres more
general classes of algorithms).

Definition 2. The cycle complezity of an asynchrénous algorithm A, is the max-
imum, over all the nodes, of the number of cycles a node goes through during
the execution of the algorithm, in the worst case.

Consider a message M of a type « algorithm A that is sent from node v
to node u. In the (C,P) sparser simulation of A, if v and u are in the same
cell then no message has to be sent by the simulation. If however v € P; and
u € Py, P,Py € P, then Cy’s center ¢1, sends the message to the preferred
link that connects P, with P;. Then the message is sent over the preferred link
and through the parent links of the breadth-first search tree of Ps to ¢q. Since
algorithm A is of type « then M is either sent to all the neighbors of v in Py or
to exactly one. In either case this information can be coded in the megsage from
¢1 to ¢o in at most log n bits.

Lemma3. Given e¢ nelwork with an (r,d)-sparser and a K cycle complezity
distributed algorithm A of type o, then A can be run in the network in O(mr +
Kdr + yrn) messages, where ylogn is the size of the oulput of the algorithm
at each node tn bils.

Proof: The term O(yrn) is the cost of distributing the outputs of A to the nodes.
The term O(mr) is the cost of collecting the topology of the neighborhood of
each cell to the center of the cell.

In each cycle of computation at node v the simulation sends at most 2r 4 1
messages for each neighboring cell of v. Thus at most 3~ A, (P)-(2r+1) messages

are sent, per cycle, resulting in a total of O(Kdr) over the entire run of the
algorithm, O

8 If the algorithm produces outputs at the nodes several times during a run then
O{yrnlog n) small messages might be necessary.

6

Ezample 1. Consider the following algorithm for the all pairs shortest paths al-
gorithm, which is also given in [15, 16, 22]. Each node starts by sending its
identity to all its neighbors. When a node receives the identity of all its neigh-
bors, it marks them to be in distance one from it, and starts the second step. In
the i’th step every node builds a message which consists of all the nodes which it
marked to be in distance i — 1 from it, and sends the message to all its neighbors.
The node waits until it receives all the messages sent by its neighbors during
their ’th step, mark the nodes which it receives their identities for the first time,
to be in distance ¢ from it, and passes to the next step. A node terminates when
it receives no new identities in an entire round. Segall in [22], gave a correctness
proof for this algorithm. Note that for this algorithm both cycle complexity, and
the size of the output at each node are O(n).

Using a (log n, n)-sparser (by setting z = log n) and Lemma 3 we get a O(n®-
logn) messages distributed algorithm to solve the all shortest paths problem.
(The algorithm to construct a (logn, n)-sparser costs O(nlogn + m) messages).

Since the simulated all shortest path algorithm works as well in the weighted
case, i.e. when each link has a real length in each direction, also our algorithm
solves the weighted problem with the same communication complexity. (The
length corresponds to the queue length in the entry to the link [19], however the
messages of the algorithm do not incur this delay because they are of the highest
priority). That is, each O(log n) bits message of the shortest paths algorithm still
incur one unit of cost. In this case, in the ith step node v sends to all its neighbors
the i-th closest node to v.

Corollary 4. The upper bound on the message complexity of the (weighted and
unweighted) all pairs shorlest paths problem is O(n?logn) messages (each mes-
sage is of size O(logn) bits).

Another example is to apply the technique to the BFS algorithm of [8] which
results in:

Corollary 5. The upper bound on the message complezily of the BFS problem
is {(E+ nlog? n) messages.

4 Generalizations

Although Lemma 1 applies only to a certain class of algorithms a similar result
can be derived to a much wider class. Lemma 10 in the sequel applies to any
algorithm that in step 3 of the computation cycle sends the same message from
a node to any subset of its neighbors.

Lernma 3 relied on the following fact about distributed algorithms of type a:
whenever a node sends a message to a subset of its neighbors, the information
about the destinations of the message can be coded in no more than O{logn) bits.
To enable a generalization of Lemma 3 we relax this assumption by introducing
two modifications in algorithms in which nodes send a message to an arbitrary

7

subset of their neighbors, as follows: First, whenever a node makes a “relevant”
change in its local state it sends a message to this effect to all its neighbors
(where “relevant” is defined in the sequel). Second, each message that is sent to
a subset of the neighbors is now sent to all the neighbors. Knowing the local state
of the sender, each neighbor determines whether the message was addressed to
it or not.

T.et us define things more formally. Let A be a distributed protocol, and let
S(A) be the set of local states of the protocol at some node. We define a relation,
o, on S(A), such that sy o ss if for every possible message M, each node upon
receiving M sends exactly the same set of messages, in both states sy, and s,
Obviously, « divides S(A) into equivalence classes. During a run of a distributed
protocol at node v, we define the relevant state of v to be the equivalence class
into which the internal state of v belongs, under the relation .

Definition 6. The state complexity of an asynchronous algorithm A, is the max-
imum, over all the nodes, of the number of times a node changes its relevant state
(i.e. changes the equivalence class) during the execution of the algorithm, in the
worst case.

In many distributed algorithms the following pattern of communication,
called local-polls, that consists of three phases occurs several times: first a node
sends the same message to a subset of its neighbors, then, in the second phase,
each neighbor that receives the message responds with a reply, and in the third
phase, the originating node collects all the replies and continues with its com-
putation. Usually the replies are called acknowledgments.

Informally, we define the weak-cycle complexity of a distributed algorithm to
be the cycle eomplexity of the algorithm discounting the cycles in which a node
sends only a response message as part of a local poll pattern of communication.
The motivation for this definition is that in many algorithms the cycle complexity
is high due to acknowledgment type of messages. Applying Lemma 3 to these
algerithms would result in no savings in the message complexity.

Again, let us define these notions more formally. Let A4 be a distributed
protocol, and let v be a node in the network.

Definition 7. We say that a message M sent from node u to v is an acknowledy-
ment, if the cycle in which M has been sent was initiated by a message received
from v, and M was the only message sent during this cycle,

We say that a cycle is a real cycle if the messages that were sent during the
cycle were not acknowledgments and were sent to more than one neighbor,

Definition 8. The weak cycle complezity of an asynchronous algorithm 4, is the
maximum, over all the nodes, of the number of real ¢ycles a node goes through
during the execution of the algorithm, in the worst case,

Definition9. The cycles in which a node sends a message to only one neighbor
are called trivial cycles, and the trivial cycle complexity is the total number of
such cycles in the network during the execution of the algorithm.

8

In order to transform algorithm A into an « type, apply to it the following
three changes (assuming FIFO discipline on the links):

1. Any change in the relevant state of a node in step 2 of the computation cycle
is broadcast by the node to all its neighbors, before step 3 is performed. Thus,
whenever a node u receives a message M from node v, the relevant state of
v at the time M was sent is available at u.

2. Replace each response message (acknowledgment) by the same fixed-size pre-
determined standard response message. (The standard response is a fixed
message with O(1) bits that is recognized as such). Upon receiving the stan-
dard response, each node can compute the real response from the relevant-
state information of the neighbor, that it has last received.

3. Any message that is sent by a node v in A to a subset of the neighbors is
sent to all the neighbors of v. Since the neighbors know the relevant state
of v at the time that the message was sent, each will be able to determine
whether the message was addressed to it, or not.

Lemma 10. Given a network with an (r,d)-sparser and a distribuied algorithm
A with K weak cycle complexity, and t trivial cycle complexity which was modified
as discussed above, then A can be run in the network in O(mr + (K + s)dr +
tr + yrn) messages where ylogn is the size of the output of the elgorithm at
each node in bils, and s is the state complexity of A {assuming that the value of
the relevant state of a node can be transmitied with logn bits).

Proof: Apply Lemma 3 to the modified algorithm A. In any local-poll the
responses from all the neighbors of a node that are in one cell are sent as one
message from the center of the cell to the corresponding neighboring cell center.
That is, when a leader of a cluster receives a message which was sent to nodes
in its cluster, it checks to see whether any of these nodes have to respond with
an acknowledgment. If yes, it sends back only one copy of the standard response
message.

Recall that in a trivial cycle at node v exactly one message is sent from
node v. Since such a message could in general go over a path of length » in the
simulation, the total complexity due to the trivial cycles is ¢r. a

Egzample 2. Consider the Depth First Search algorithm presented in [b]. The
trivial cycle complexity ¢, of that algorithm is n. The weak cycle complexity s,
of that algorithm is 2, and its state complexity is also 2. Thus, if a (logn, n)-
sparser already exists in the network the DFS algorithm can be run in On logn)
messages.

Once a sparser is given in the network, the message complexity of any algo-
rithm is determined by its three parameteres: trivial cycle complexity, real cycle
complexity, and state complexity. E.g. the MST algorithm of [17] has a trivial
cycle complexity O(nlogn), real cycle complexity O(logn) and state complexity
O(logn).

9

Acknowledgments: We thank Baruch Awerbuch and David Peleg for helpful dis-
cussions. In particular, David brought to our attention [21] in early 1989, and
Baruch pointed out that the standard shortest paths algorithm works as well in
the weighted case. We would also like to thank Mike Merritt and Mike Saks for
helpful discussions.

References

1,

10.

11.

12.

13.

14,

15,

186.

17.

Y. Afek, B. Awerbuch, and E. Gafni. Applying static network protocols to dy-
namic networks In Proc. of the 28th IEEE Annual Symp. on Foundat:on of Com-
puter Science, pages 358-370, October 1987.

. Y. Afek, B. Awerbuch, S. Plotkin, and M. Saks. Local management of a global

resource in a communication network. In Proc. of the 28th IEEE Annual Symp.
on Foundation of Computer Science, pages 347-357, October 1987.

Y. Afek and M. Ricklin. Sparser: A paradigm for running distributed algorithms,
Extended abstract submitted to FOCS-90, April 1990.

B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804-823, October 1985.

. B. Awerbuch. A new distributed depth-first-search algorithm. Information Pro-

cessing Letters, 20(3):147-150, April 1985.

B. Awerbuch and R. Gallager. Distributed bfs algorithms. In Proc. of the 26th
TEFEE Annual Symp. on Foundation of Computer Science, October 1985,

B. Awerbuch, A. Goldberg, M. Luby, and S. Plotkin. Network decomposition and
locality in distributed computation. In Proc. of the 0th IEEE Annual Symp. on
Foundation of Computer Science, pages 364-369, October 1989.

B. Awerbuch and D. Peleg. Efficient distributed construction of sparse covers.
Technical report, Weizman Institute of Science, Dep. of Computer Science, July
1990.

. B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic over-

head. In Proc. of the 31st IEEE Annual Symp. on Foundation of Computer Science,
October 1990.

B. Awerbuch and D. Peleg. Sparse partitions. In Proc. of the S1st [EEE Annual
Symp. on Foundation of Computer Science, October 1990.

D. P. Bertsekas and R. G. Gallager. Data Networks. Prantice Hall, 1987.

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Trans. on Computer Systems, 3(1):63-75, January
1985.

W. Dijkstra and C. s. Scho]ten Termination detection for diffusing computations.
Information Processing Letters, 11-1:1-4, August 1980.

A. Ephremides. The routing problem in Computer Networks. Springer Verlag,
1586. ;

R. G. Gallager. A shortest path routing algorithm with automatic resynch Un-
published note, March 1976.

R. G. Gallager. Distributed minimum hop algorithms. Technical Report LIDS-P-
1175, M.I.T. Lab for Information and Decision Systems, January 1982.

R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for min-
imum weight spanning trees. ACM Trans. Program. Lang. Syst., 5:66—77, January
1983.

18

19.

20.

21.

22.

23,

10

. J. Jaffe and F. Moss. A responsive distributed routing protocol. IEEE Trans. on
Communication, COM-30(7, part II):1758-1762, July 1982.

J. M. McQuillan, I. Richer, and E. C. Rosen. The new routing algorithm for the
arpanet. IEEE Trans. on Communication, COM-28(5), May 1980.

U. Pape. Implementation and efficiency of moor-algorithms for the shortest route
problem. Mathematical Programming, 7T:212-222, 1974.

D. Peleg. Sparse graph partitions. Technical Report CS89-01, Dep. of Applied
Math. The Weizmann Institute, Rehovot, Israel, Febrnary 1989.

A. Segall. Distributed network protocols. IEEE Trans. on Information Theory,
IT-29(1), January 1983.

J. M. Spinelli. Broadcasting topology and routing information in computer net-
works. Master’s thesis, MIT, March 1986.

Closed Schedulers:
Constructions and Applications to Consensus
Protocols

Ronit Lubitch & Shlomo Moran

Dept. of Computer Science, Technion, Haifa 32000, Israel

Abstract. Analyzing distributed protocols in various models often in-
volves a careful analysis of the set of admissible runs, for which the
protocols should behave correctly. In particular, the admissible runs as-
sumed by a t-resilient protocol are runs which are fair for all but at most
t processors. In this paper we define closed sets of runs, and suggest a
technique to prove impossibility results for t-resilient protocols, by re-
stricting the corresponding sets of admissible runs to smaller sets, which
are closed, as follows:

For each protocol PR and for each initial configuration c, the set of
admissible runs of PR which start from ¢ defines a tree in a natural way:
the root of the tree is the empty run, and each vertex in it denotes a
finite prefix of an admissible run; a vertex u in the tree has a son v iff
v is also a prefix of an admissible run, which exiends u by one atomic
step. ‘

The tree of admissible runs described above may contain infinite paths
which are not admissible runs. A set of admissible runs is closed if for
every possible initial configuration ¢, each path in the tree of admissible
runs starting from ¢ is also an admissible run, Closed sets of runs have
the simple combinatorial structure of the set of paths of an infinite tree,
which makes them easier {0 analyze.

We introduce a unified method for constructing closed sets of admissible
runs by using a model-independent construction of closed schedulers, We
use this construction to provide unified proofs of impossibility results jn
various models of asynchronous computations. One of our results gener-
alizes a known impossibility result in a non-trivial way.

1 Introduction

A distributed decision task is a distributed task in which every processor even-
tually makes an irreversible decision step. One of the more challenging problems
in distributed computing is the characterization of the decision tasks that can
be solved in the presence of crash (fail stop) failures, under which a processor
may stop participating in the protocol prematurely. A protocol that solves such
a task in the presence of at most ¢ crash failures is called t-resilient. A general
characterization of tasks that can be solved in the presence of ¢ crash failures
is known only for the case ¢ = 1 [2]. In spite of the large number of papers
published in this area, our understanding of ¢-resilient protocols for ¢ > 1 is still

12

quite limited. For instance, for each ¢ > 2, it is not yet known whether there are
t-resilient protocols for the renaming task with n +t — 1 new names (1), or for
the k-set consensus task with k=1 [3].

The difficulty of this problem does not seem to depend on the specific model of
computation studied (i.e., shared memory or message passing), but more on the
inherent difficulty of coordination between processors in a totally asynchronous
environment, and in particular on the impossibility to distinguish between faulty
processors and processors which are very slow, but in working order. Conse-
quently, it is possible to have a t-resilient protocol for a given task, with the
following unpleasant property: The number of steps that may be executed by
the protocol, when started from a certain initial configuration, before it fulfills
its task, is unbounded.

In this paper we propose an approach for analyzing asynchronous protocols
which avoids the difficulty mentioned above. In this approach, we restrict the set
of runs for which the protocol is required to behave correctly to a set of a simple
structure, which we call “closed”. A closed set of runs has the property that if a
protocol is guaranteed to fulfill some task in each run in it, then it is guaranteed
to fulfill that task within a fixed number of steps. We use this approach to
provide alternative proofs for the impossibility of ¢-resilient consensus protocols
in various models. One of these proofs generalizes the result of [6] in an interesting
way.

1.1 Protocols and Runs

A distributed system consists of a set of n (n > 2) asynchronous processors
{pP1,...,Pn}, modeled as (not necessarily finite) state machines, and of some
means of communication among the processors (e.g., shared memory or message
passing).

Each processor p acts according to a deterministic transition function 4,. The
transition function is described by the set of atomic steps which can be taken
by the processor. An atomic step consists of a possible change of the processor’s

. state, and of reading and/or writing from the communication means. A pretocel
for a given distributed system is a set of n transition functions, one per processor.

A configuration of the system is a description of the system at some moment.
It consists of the internal state of each processor and of the contents of the
communication means. An snstial configuration is one in which each processor is
in an inilial stale, and the communication means contains some default value.

For each processor p and for each configuration ¢, there is a (finite) set
of atomic steps that can be taken by p from the configuration ¢. A run of a
protocol is an infinite sequence of atomic steps that can be taken in turn starting
from some (initial) configuration ¢. Each atomic step is performed by one of the
processors, and brings the system to a subsequent configuration. We say that
a run r is applicable to a configuration ¢ if it is a run that may start from the
configuration e. If » is applicable to ¢, then for every (finite) prefix »' of r, the
configuration resulted from applying r to ¢ is denoted by o(e,).

13

1.2 Closed Sets of Admissible Runs

A distributed protocol is required to fulfill a certain task w.r.t. a specified set of
runs, which we call the set of admissible runs. Thus, the correctness of a protocol
depends not only on the task it should accomplish, but also on the set of admis-
sible runs which are assumed. For example, there are protocols which are correct
in a synchronous environment but not in an asynchronous one, and there are
protocols which are correct when all processors are non-faulty but are incorrect
when processors are subject to failures. In both these examples, protocols which
are correct for a restricted set of admissible runs become incorrect when the set
of admissible runs is extended.

Let R be a set of runs, and ¢ be a given configuration. We denote by R the
set of all runs in R which are applicable to ¢. R® defines an infinite directed tree,
T(RF), in a natural way: the root of T(R®) is the empty run, and each vertex in
it represents a finite prefix of a run in R%; a vertex u in T(R°) has a son v iff v
represents a prefix of a run in R®, which extends u by one atomic step. When
there is no ambiguity, we will identify vertices in I'(R®) with the prefixes of runs
they represent,

For an infinite tree T", Paths(T) denotes the set of infinite directed paths in
T'. Note that for each set of runs R and for each configuration ¢, Paths(T(R®))
is & set of runs which are applicable to ¢, and Paths(T(R®)) 2 R°. However
Paths(T(R°)) may contain runs which are not in R°. For instance, it is possible
that for every r € R®, every processor takes an atomic step infinitely often in
r, but Paths(T(R°)) contains a run in which only one processor is activated
forever.

A set R of runs is closed iff for every possible configuration ¢, each path in
T(R°) is atun in R, i.e.: Paths(T(R®)) = R°. Closed sets of runs appear to be
much easier to analyze than other sets of runs, since they have the simple com-
binatorial structure possessed by the set of paths of an infinite tree of bounded
degree. One specific useful property which is possessed by such sets, is the fol-
lowing: if it is given that each run in R® eventually satisfies certain property,
then it is guaranteed that this property is achieved within a constant number of
steps. This property is proved in the following lemma:

Lemmal. Let R be a closed set of runs of some protocol PR. Assume that for
some predicate Pred and for some configuration ¢, every run r € R® has a prefiz
' which satisfies Pred. Then there is an absolute constant M., such that every
run r € R® has a prefiz of length at most M, which satisfies Pred.

Proof. Let T = T(R®) = (V, E). Define:
V' = {v € V | each prefix v’ of v does not satisfyPred}

E'={e=(v,x) €E|v,uecV'}

By the definition, 7' = (V’, E') is a subgraph of T, and for each v € V' the
directed path in T from the root to v is in 7". Hence T” is a directed tree. 1f
V'l < 0o, then M. = 1+ max{depth(v)|v € V'} satisfies the requirement of the

14

lemma. Qtherwise, 7" is an infinite tree, the degree of its vertices is bounded,
so by Konig's Infinity Lemma [4] there is an infinite directed path r in T". This
means that ris a run in R®, all whose prefixes do not satisfy Pred, a contradiction.

Unfortunately, in many cases the set of admissible runs which is of interest is
not closed. The most notable example is probably the sets of admissible runs for
t-resilient protocols, which must guarantee correct behavior in all runs in which
at most ¢ processors are subject to crash (fail-stop) failures. Admissible runs of
such protocols are runs which are fair with respect to at least n — ¢ processors.
The exact definition of “fair” depends on the specific model studied, but under
all ecommon definitions, the set of all n — ¢ fair runs of a given protocol is not
closed for 0 <t <n -2,

In this paper we suggest a unified method for proving impossibility results
concerning {-resilient protocols. In this method, we prove the impossibility result
with respect to a proper subset of the set of all n — ¢ fair runs, which is closed,
by using Lemma 1 above. The definition of this subset is based on a purely
combinatorial construction, which is independent on the specific model studied.
We demonstrate our technique by using it to prove impossibility of t-resilient
consensus protocols in some variants of the shared memory model and of the
message passing model. The results for the shared memory model are similar to
results in [7], while one of the results in the message passing model is similar to a
result of {5], and others are new extensions of the basic impossibilty result of [6].
In particular, we show that this result holds even if one assumes a global FIFO
on the outgoing messages of each single processor, and that in one atomic step
a processor may receive a message and send arbitrarily many messages. This
should be contrasted with a result of [5], which shows that if there is a global
FIFO on incoming messages of each processor then that impossibility result is
not valid any more.

Note that impossibility results proved for restricted sets of n — ¢ fair runs
as above are stronger than similar results proved for sets of all n — ¢ fair runs,
since the protocols are required to behave correctly for smaller sets of admissible
runs. For instance, our proofs of the results of [7, 5] mentioned above, show that
there are no t-resilient protocols for the models studied there (¢ is either 1 or 2,
depending on the model), even if it is given that during any three consecutive
steps of each processor, at least n — ¢ — 1 other processors are activated.

1.3 Summary of Results

In the next section we define the consensus problem and present a general, model-
independent, proof of our results. This proof assumes the existence of closed sets
of runs which satisfy certain properties. In Section 3 we provide a combinatorial
construction of closed schedulers, which are the main tool we use to construct
the closed sets of runs needed for our proofs. Finally, in sections 4 and 5 (and

in the Appendix) we use the closed schedulers to prove the desired impossibility
results.

15
2 Conseﬁsus Protocols

A consensus protocol is a protocol in which each processor p has a binary input
register in, and an output register out,. The initial content of the output register
is L. A consensus protocol is correct w.r.t. a given set of admissible runs R, if
in each run r € R, some non-faulty processor decides on a binary value v, by
writing it in the output register, such that ‘

1) consistency: all the processors which decide, decide on the same value v.
2) nontriviality: v is the input of at least one of the processors.

A t-resilient consensus protocol is a protocol which is correct w.r.t. the set of all
n —t-fair runs (i.e, at most ¢ processors are faulty in them), which are applicable
to some initial configuration.

Let PR be a consensus protocol, B¢ be a set of runs of PR applicable to an
initial configuration ¢, and T(R®) be the tree associated with R° as described in
Section 1.2. Each vertex v € T(R®) represents ‘a finite prefix r’ of some run r in
Re.

Let u be a vertex in T(R®), and let D, be the set of decision values of the
runs in R° which are extensions of u. u is bivalent in T(R®) if | D, |= 2. u
is univalent in T(R®) if | Dy |= 1, and we say that u is O-valent in T(R°) or
l-valent in T(R°) according to the corresponding decision value. Note that if
PR is a t-resilient protocol and all the runs in R® are n — ¢-fair runs, then each
vertex in T(R°) is either bivalent or univalent in T'(R®). When the tree T(R°) is
obvious from the context, we will not mention it in the terms univalent, bivalent
and 0(1)-valent.

2.1 Proving Impossibility of Consensus by Using Closed Sets of
Runs

In this subsection we present a model-independent impossibility proof of t-
resilient consensus protocols, for ¢ > 1, which is based on the existence of cof
losed sets of n — ¢-fair runs, which satisfy certain properties. We start with some
definitions.
Throughout the paper, ¢ denotes a subset of {1,...,»}, and for such a Q, Pg
denotes the set of processors {p; | i € Q}. For sequences 2 and y, = - y denotes
the concatenation of x and y.
Definitions: A Pg-run is a run in which the set of non-faulty processors is
included in Pg. Runs ry and ry are Pg-equivalent if for each p € Pg, p makes
the same sequence of atomic steps in r; and in r.
Let 71 = T(R**) and T3 = T(R°*) be the trees of the sets of admissible runs
applicable to configurations c; and cg resp. Let v; be a vertex in T} and let vo
be a vertex in Ty. We say that v; and v, are Pq-similar if there exist Pg-runs ry
and ry which are Pg-equivalent, such that (v; - r) is in Paths(Ty) and (vg - ra)
is in Paths(Ty).

In our proof, we define for a given t-resilient consensus protocol PR and for
each initial configuration ¢, a subset of the set of n — ¢-fair runs of PR atarting

from ¢, denoted as Ry, ,, and we let Ry be the union U, R;,:, taken over all

16

initial configurations ¢. Ry, ¢ is a closed set of n — t-fair runs, and it satisfies the
following properties:

initial similarity: Let ey, ¢ be initial conﬁgura,tlons andlet Q@ C {1,...,n},s.t.
|Q| > n — 1. If each processor p € P has the same input in ¢; and in cg,
then the roots of 7(R*) and of T(R*) are Pg-similar.

siblings similarity: Let ¢ be an initial configuration, and let «,v,w € T(R;, ,)
s.t. v and w are sons of u. Then for some Q@ C {1,...,n}, |Q| = n —1, there
is a descendant v’ of v and a descendant w' of w such that +' and w' are
Pg-similar.

Theorem 2. For each t > 1, there is no t-resilient consensus protocol which
is correct w.r.t. a closed sel of n — t-fair runs R, which satisfies the initial
similarity and siblings similarity properties.

Proof. Assume by the way of contradiction, that PR is a t-resilient consensus
protocol which is correct w.r.t. a set of runs R,, which satisfies the above prop-
erties, where t > 1.

We derive a contradiction in three steps:

Step 1: Proof of the existence of an initial configuration eo, 8.t. the root T'(R;’;)
is bivalent,
Assume by the way of contradiction that for each initial configuration ¢, the
root of T(Ry, ;) is univalent. Let co be the initial configuration in which the
value of each input register in, is 0, and c; be the initial configuration in
which the value of each input register in, is 1. By the nontriviality property
for consensus protocol, the root of T'(R,’;) is 0-valent and the root of T(R,!,)
is 1-valent. Hence, there must be initial configurations ¢, and ¢; which differ
only in the initial value iny; of a single processor p;, the root v, of T(R;*,)
is 0-valent and the root vy of T(R',) is 1-valent. Let @ = {1,...,i—1,i+
1,...,n}. Since ¢t > 1 and |Q| = n — 1, the initial similarity property implies
that there are Pg-runs rs € Ry and ry € R;};, which are Pg-equivalent.
4 is an n — t-fair Pg-run, and hence there must be p € Pg s.t. p eventually
reaches a decision state in r,. Since v, is O-valent, p must decide on 0 in
ra. rq and rp are Pg-equivalent, so p takes on rp the same steps as in rq,
and therefore p decides on 0 also in ry. This contradicts the 1-valency of v,.
Therefore, there exists an initial configuration ¢p, 8.t. the root of T(Ry’,) is
bivalent.

Step 2: Proof of the existence of vertices u,v,w € T = T(R?,), v and w are
sons of u, s.t. v is O-valent and w is 1 valent.
For v € T, we define Pred(v) to be true if v is univalent and false if v is
bivalent. Since every run » € R}, °, is n — t-fair, every such run r has a prefix
s.t. the vertex representing r' in T(R;?,) satisfies Pred. By Lemma I,
there is a constant M, s.t. every vertex of depth > M, in T satisfies Prcd
Assume that M, is as small as possible. Since by Step 1 the root of T(R7’;)
is bivalent (i.e. does not satisfy Pred), M. > 1 and hence there exists a
bivalent vertex, u, of maximal possible depth. This implies that u has one
son v which is Q-valent in T and another son w which is 1-valent in T'.

17

Step 3: Let v and w be as in Step 2. By the siblings similarily, there is a vertex
v’ which is a descendant of v, and a vertex w’ which is a descendant of w, s.t.
for some @ C {1,...,n},|Q| 2 n—1, v/ and ' are Pg-similar. Then there
are Pg-runs r; and rz which are Pg-equivalent, such that both (v' - ;) and
(w'-rg) are in Paths(T). Like in Step 1, since ¢’ is (-valent, some processor
p € Pg decides on 0 in r;. Since p takes the same steps in both runs, p
decides on 0 also in 2. But this is a contradiction, since w' is 1-valent,

In order for the above proof to hold, we have to construct the closed sets of
n — t-fair runs R, ;, which satisfy the initial similarily and siblings similarity
properties. This construction is carried out in two steps: First, we define and
construct “closed schedulers”, and prove that they satisfy certain properties.
Then, for each specific model, we construct the corresponding sets of run Ray
by providing a mapping of schedulers to runs of {-resilient protocols in that
model,

3 Closed Schedulers

Let I be a (finite) set of integers. A schedule s = (31,32, -) over I, denoted
I-schedule, is an infinite sequence of integers from I; §() = (51, - --,8;) denotes
the prefix of the first £ elements of s (s(u) =€) A lchedule 8 is fair for an integer
i, if i appears in it infinitely often. s is fair for a subset Q of I if it is fair for
every i € Q. s is m-fairfor 1 < m < n if it is fair for a subset Q where |Q| > m.
Note that each schedule is 1-fair.

A scheduler S over I is a set of schedules as above. S is m-fair if all the
schedules in it are m-fair.

Each scheduler S defines an infinite directed tree T'(S) in a natural way, as
follows: The vertices of T'(S) are all the finite prefixes of schedules in S, and a
vertex u is the father of a vertex v iff v = u - (i) for some i. The edge (u,v) is
marked with i. In this way, each schedule s € S is an infinite path in T(S).

Let Paths(T(S)) be, as before, the set of infinite paths in T(S). Note that
Paths(T(S)) is a scheduler, and that for each scheduler $, Paths(T(S)) 2 S. A
scheduler S is closed if Paths(T(S)) = S, i.e. all the infinite paths in T(S) are
in 5.

Examples:

— For each n € N, the set S, of all 1-fair schedules over {1,...,n} (which is
the set of all schedules over {1,...,n}) is closed,

— Foreachn > 2,0 <t < n—2,let Sy ; denote the set of all n—t-fair schedules
over {1,...,n}. Sn is not closed: ¥i € N the schedule (1,...,1,1,...,n—

i times
t,1,...,n~t,...) is n —t-fair, so the vertex ., 1) is in TS, +). This im-

¢ times
plies that the schedule (1,1, 1,..), which is not n—t-fair, is in Paths(T(S, 1)).
In fact, T'(S, ;) = T(Sn)foralln>2 0<t<n—-2

18

— Each finite scheduler (i.e. a finite set of schedules) is closed.

— Let T be an infinite directed tree with no leaves whose vertices are finite
sequences of integers from {1,...,n}, and a vertex u is the father of a vertex
v iff v = u . (i) for some i (the edge (u,v) is marked with). Then the
scheduler § = Paths{T) is closed.

3.1 Construction of Closed and Fair Schedulers

In this subsection we define for each n > 2,0 < ¢ < n —1, a tree T,,; s.t. each
infinite path in T, ; is n — ¢-fair. So the scheduler 8, ; = Paths(Th) is n —t-
fair and closed. In the next subsection we prove some combinatorial properties
of T, ¢+, which are used in the impossibility proofs based on our construction. For
t=n-1,Tha-1=T(Ss), where S, is the set of all {1, ..., n}-schedules. Below
we present the construction of T, ; for 0 <t < n -~ 2,

Each vertex in T, ; will have either ¢+ 1 or ¢ + 2 sons. Informally, the sons of
a vertex u € T, ; are determined by the suffix of the last n — ¢ elements in (the .
sequence representing) u. In order to generalize the definition also for sequences
of length < n — £, we associate with each finite sequence &’ a sequence of n — ¢
integers in {1, ..., n}, called suf(s'), which is defined by induction on the length
of & as follows:

1. suf(e) =(1,...,n —t), where ¢ is the empty sequence.
2. For &' of length m > 0, ¢ = &” - (i) where 8" is of length m — 1. Let
suf(s") = (81,...,8n-t). Then suf(s') = (s2,...,8n-1,1).

Note that if the length of &' is at least n — ¢, then suf(s’) is the suffix of length
n —t of &. For a finite sequence &, we denote by SUF(s’) the set of elements in
suf(s').

For 0 <¢ < n —2, the tree T, ; is defined inductively as follows:

1. The empty sequence ¢ is the root of T, .

2. Let u be a vertex in Ty, and assume that suf(u) = (s1,...,85-¢), where
& # 8; for i # j (that is: all the elements in suf(u) are distinct). A vertex
u with this property is said to be normal Let ¢1,...,4; be the integers in
{1,...,n}\SUF(u). Then the sons of u are u-(i;), ..., u- (%), u-(s1), u-(s2).

3. Let u be a vertex in T, ;, and assume that suf(u) = (s1,...,80-¢—1,81),

where s; # s; for i # j (that is: the first and last elements are equal and all
the others are distinct). A vertex u with this property is said to be special.
Let 43,...,4:41 be the integers in {1,...,n} \ SUF(u). Then the sons of u
are - (§1),..., % (ity1).

For the above definition to be complete, we need to show that every vertex
in T+ must be either normal or special. This follows from Lemma 3 bellow.

Lemma3. Each normal vertex in T, ¢ has t + 2 sons, exactly one of which is

special and the others are normal, and each special vertez in Ty, ¢ has £+ 1 sons
which are all normal.

19

Proof. Follows immediately from the definition of T, ;.

The definition of T}, ; guarantees that for each schedule s in Paths(T,), in
each subsequence of n—1+1 consecutive elements of s, at least n—1 elements are
distinct. This implies that the closed scheduler 8, ¢ = Paths(T,) is n — t-fair.
Example: Let n = b,¢t = 2, The vertex u; = (1,2,3) is a normal vertex in
T%,2, and its sons are (1,2,3,4), (1,2,3,5),(1,2,3,1) and (1,2, 3, 2). The vertex
ug = (1,2,3,2) is a special vertex (the only special son of u;) and its sons are
(1,2,3,2,1),(1,2,3,2,4),(1,2,3, 2,5), which are all normal vertices,

3.2 Similarity Properties

In this subsection we prove that the trees T, defined above satisfy certain
properties, which are needed to guarantee that the initial similarity and siblings
simélarily properties are satisfied by the sets of runs we construct in the various
models.

Definition: For each v € T, 1, Ty 1(v) is given by:
Toa(v) ={u|v-u €T}

i.e. T,,:(v) is the subtree of T),; which consists of v and all its descendants,
when omitting the prefix v from all the vertices. Note that for each v € Ty, 4, the
scheduler Paths(T, i(v)) is n — ¢ fair and closed.

Lemmad. let u be a vertex in Ty ¢, and let Q € {1,...,n}, be of cardinality
> n—t. Then Paths(T, ((u)) contains a Q-schedule.

Proof. Let Q = {41, ,im}, and let suf(u) = (81,+++,8n—_1). Assume that the
elements in @ are ordered so that for each k, 1 < k < m, if 4 is in suf(u), then
for every £ s.t. k < £ < m, ¥ also appears in suf(u), and the last occurrence
of i in suf(u) precedes the last occurrence of iz in suf(u)*. Since m > n —t,
this implies that for 1 < k < m, i; does not occur (8541, +,8n—¢). This easily
implies that the periodical schedule (i), -+, im, 1,) i8 in Paths(T, (u)).

Definitions: Vertices u and v in T,, ¢ are equivalent iff T, o(u) = Tnt(v). u and

v are Q-similar, @ C {1,...,n},|Q| = n — ¢, iff there exists a Q-schedule s s.t.
s € Paths(T, (v)) N Paths(T, +(u)).

The existence of pairs of vertices which are Q-similar for some Q C {1,...,n}
is used in all our impossibility proofs.

Lemmab5. For each u,v €T, ;:

(a) If suf(u) = suf(v), then u and v are equivalent.
(b) Let Q C {1,...,n},|Q| 2 n —t. If there exists a sequence ' € QP s.t.
bothu-s' andv-8 are in Ta,, then u and v are Q-similar,

! Note that if u is special, then one integer appears twice in suf{u).

20

Proof.

(a) We have to show that for each schedule 5, 5 is in Ty ¢(u) iff it is in 2,,4(v).
Let & = (81,82,), be given. An easy induction shows that for each £>0,
the prefix (sy, - - +8¢) of & is in Ty ¢(u) iff it is in T +(v). This proves (a).

(b) By Lemma 4, Paths(T, «(u-s")) contains a @-schedule, say s. Hence suf(u)
contains the Q-schedule & - 8. By (a) above and the fact that suf(u-s') =
suf(v-8') =4, & + 8 is also in Patha(T;, ¢(v)). This proves (b).

The next technical claim follows directly from the inductive definition of T, 4,
and its proof is left to the reader.

Claim 3.1 For each n > 2,0 < t < n—2, let v, be a normal veriez in
Tn,t, suf(vn) = (81,...,80—t) and v, be a special vertex in T, ., suf(v,) =
(t1! .. 'vtﬂ—t-l:tl)-

(a) Let & = suf(vn). Then, v, - &' is a normal vertez in T, ;.

(b) Let & = (81,...,8n-1-2,8n—t, Sn—t-1) (i.e. &' is obtained by switching the
last two elements in suf(vs)). Then, v, - &' is a normal vertez in 15, 4.

(c) Lets' = (I,81,-..,8n1-2,8n—¢) wherel € {1,...,n\SUF(vn). Then, vn-s'
ts a normal vertez in Ty, 4.

(d) Let &' = (I,13,...,tn-t-1,t1) where L € {1,...,n}\ SUF(v,). Then, v, - '
is a normal vertez in Ty .

(e) Let v be a vertex in T3 and &' a sequence of lengthn —t 8.4 v-& is a
normal vertez in T, 1. Let 8" be a sequence oblained by replacing elemenis
in & by distinct integers from {1,...,n}\ {SUF(v) USUF(v-s')}. Then,
v- 8" is normal vertez in T, 4.

Lemma8. Letn > 2,0 <t € n—1. Then for each u € T,, 4, and for each i,j
s.t. both u- (4) and u-(j) are in T, 4, it holds that both u - (i,7) and u - (j,i) are
in Tpy, and for each Q C {1,...,n},| Q@[22 n—¢,

1. u-(i,j) and u . (j,9) are Q-similar.
2. Ift>1andi @ Q then u-(i,j) and u- (j) are Q-similar.
3. Ift>2andi,j ¢ Q then u- (i) and u - (j) are Q-similar.

Proof. If t = n — 1 then T, ¢ is the complete n-ary tree, and the lemma holds
trivially. Thus, we assume that 1 < ¢ < n — 2. Let u be a vertex in T, 4,
Q € {1,...,n},|@Q| > n —t. It is easy to see that if u . (i) and u - (j) are
vertices in Ty, ¢, then u; = u. (4, j) and uz = u - (4, §) are normal vertices in Ty, ¢,
where the only difference between suf(ui) and suf(uz) is the order of the last
two elements. We now prove each of the three claims in the lemma.

1. Let u; = u-(§,j) and ug = u - (j,i). By lemma 5 (b) it suffices to show
that there is a sequence & & Q"~Y, s.t. both uy - & and us - & are in Tp 4.
Assume first that suf(ui) € Q™ *. In this case, we take s’ = suf(u1). Then,
by Claim 3.1 (a) uy - &' is a normal vertex in T, ¢, and by Claim 3.1 (b)
uz - 8 is a normal vertex in T, ;.

21

If suf(uy) € Q7~*, we let s’ be the sequence obtained by replacing all the ele-

ments in su f(u,)\ @ by elements in Q\ SU F(u,) (this is possible since |Q| >

|SU F(u1)]). Since SUF(u1) = SUF(u1 - suf(u1)) = SUF(uy - suf(uy)), by

Claim 3.1 (e), both u; - 8’ and u3 - 8 are normal vertices in T;, ;. Hence, by

Lemma 5 (b), u; and uy are Q-similar.

2. Let vy = u-(j), uz = u- (i) and let ug = u . (i,7). As in 1. above, it suffices
to show that there is a sequence &' € "%, s.t. both 41 -&' and ua-s' are in
Tnp- Let suf(u) = (81, -, 8nwi-1,5) and let suf(uz) = (81, +, 8p—¢-1,9).
Assume first that SUF(u;) \ {{} C Q. In constructing s’ we distinguish
between two cases:

Case 1: Both u; and uj are normal. In this case i € SUF(u;), and hence
SUF(u1) C Q. Let 8/ = suf(u;). Then u; - ¢ is in Ty, ; by Claim 3.1 (a),
and uz + & is in Tp, ; by Claim 3.1 (c). ‘

Case 2: Not case 1. Then s, € {i,j}, and hence |SUF(u;)|JSUF(u2) \
{i}] < n—t < |Q|. Since i ¢ Q, there is an £ € @, which is not in
SUF(u1)|JSUF(u2). In this case we let & = (¢, 83, - -8,-¢-1,7). Then
ug- & is in Ty, ¢ by Claim 3.1 (c). If 8y = j then u; - & is in T, ; by Claim
3.1 (d), else u, - &' is in T, ; by application of (a) and then (e) of Claim
3.1. :

Assume now that SUF(u;) \ {i} € Q. We replace in each of the two cases

above the sequence &' by a sequence 8”, which is obtained by replacing the

elements in &' which are not in @ by distinct elements from Q (again, this
is possible since |Q| > n —). By Lemma 3.1 (e) both u; - s” and ug - 5" are
normal vertices of T, ;, and by Lemma 5 (b) they are Q-similar.

3. Let w3 = u- (i) and uz = u - (j). Again, it suffices to show that there is a
sequence &' € Q"~*, s.t. both u; - 5’ and us - 5’ are in T, ;. Let auf(u;) =
{51, 8nmtw1,%) and let suf(uz) = (81, --,8n-1-1,7). Assume first that
SUF(u1)\ {4,7} C Q. At least one out of u;, uy is normal, so assume that
uy is normal. We let &' = (m, .., 8,_¢_1,£), where (i) £ € Q\ SUF(v;), and
(ii) if 81 # j then m = sy, else m # £, and m € Q\ SUF(u;). Then by Claim
3.1 (e), both uy - &' and ug - &/ are in T, ;.

Assume now that SUF(uy) \ {i,j} € Q. As in the previous cases, we con-

struct a sequence s” by replacing the elements in s’ above which are not in

@ by distinct elements from Q. By Claim 3.1 (e) both u; - s and ug - 5" are

normal vertices in T, ;, and by Lemma 5 (b) they are Q-similar.

4 The Shared Memory Model

In this section we apply the proof technique of Section 2 to prove impossibility
of {-resilient consensus protocols for various shared memory models, For this, we
define a mapping M,m which, for each protocol PR, maps each pair (e, s) of a
configuration ¢ and a schedule s to a run of PR which is applicable to ¢. Then

we use in our proof the sets of runs Ry, which is the union | J, Ry, 4, taken over
all initial configurations ¢, where

nit = {Mam(c,8) | 8 € Sns},

22

where S, ; is the closed scheduler defined in Section 3. The impossibility proof
is then completed by showing that R, ; is a closed set of n — t-fair runs which
satisfies the initial similarify and siblings similarity properties.

4.1 The Model

In a shared memory system, processors communicate via a set of shared reg-
isters. We consider two kinds of protocols which differ in the atomicity of the
shared registers, In a read/wrile protocol a processor may atomically read or
atomically write a shared register. In a read-modify-write protocol a processor
may atomically read a shared register, and depending on its value write a new
value into it.

A configuration of the system consists of the internal states of the processors
and the contents of the shared registers. An initial configuration is one in which
each processor is in an initial state and all the shared registers have some default
initial values.

An atomic siep of a processor p consists of an atomic operation to a shared
register followed by an internal state transition. Given a configuration ¢, an
atomic step is completely determined by specifying the active processor p.

A processor p is non-faully in a run if it takes infinitely many steps in it, and
it is fauliy otherwise. A run is n — {-fair if at most ¢ processors are faulty in it.

We start by defining a mapping M,,,, which for each protocol PR in a shared
memory model, maps schedules to runs of PR. Let ¢ be a configuration and
8 = (81,83,) be a schedule. st} = (81, -, 8¢) denotes the prefix of length £
of s. The run r = M, (c, 8) = (a1, a2, -) is defined by defining, for each £ > 0,
the prefix of r, #(& = M,,,.(c, 89), as follows:

~ r® = M, (e, 809) = My (c,€) = .

— Let M,p(c,5(®)) = r& = (ay,--+,a¢). Then M,p(c, s¢+1)) = plt+1) = p(8) .
(ae41), where agyy is the atomic step taken by processor p,,,, from the
configuration o (e, 19,

For each initial configuration ¢, R}, ;, = {M,m(c,8) | 8 € S, }. The mapping
Mym defines isomorphism from Ty ¢ onto T(R;, ;). We denote the image of a
vertex u € Ty ¢+ under this isomorphism by u.. By the definition of the mapping
M, and the fact that S, is an n — t-fair scheduler, the set R, ; is a closed
set of n — t-fair runs. In order to prove that it satisfies also the initial similarity
and siblings similarily properties, we need one more definition and lemma:
Definition: Configurations ¢; and ¢z are Pg-equivalent, for Q C {1,...,n}, if
all the shared registers have the same values in ¢; and in ¢z, and each processor
P € Pg is in the same internal state in ¢; and in ¢.

Lemma?7. Lel ¢; and ¢z be Pg-equivalent configurations, and let 8 be ¢ Q-
schedule. Then the runs r1 = M,m(c1,8) and rg = M,n(c2,8) are Pg-runs
which are Pg-equivalent.

23

Proof. First, observe that if ¢ and d are Pg-equivalent configurations, then for
every i € Q, Mym(c, (i) = M,m(d, (i), and the configurations o(c, M,m(c, (§)))
and o(d, M,;n(d, (i))) are Pg-equivalent. _

For each integer £, let #{) = M, (c1,4®) and 1 = M,m(ca, 8®). Using
the above observation, a straightforwards induction on £ shows that the config-
urations a(ey, rgt)) and o(ca, rgl)) are Pg-equivalent. It follows that the runs r,
and ry are Pq-runs which are Pg-equivalent (and, in fact, are identical).

The indtial similarity property follows from Lemma 7, Lemma 4 and the defi-
nition of the mapping M,,,. The siblings similarity property will be proved for
each specific model.

4.2 TImpossibility of 1-Resilient Read/Write Consensus Protocols

Let PR be a given protocol in the read/write model. We prove below that PR is
not a l-resilient consensus protocol. By the said above, it suffices to prove that
Rn,1 satisfies the siblings similarity property.

Lemma8. Let u,v = u - (§),w = u - (j) be vertices in Taa, end let ug, ve, w,
the corresponding vertices in T(Rn,1(c)). Then there is a descendant v!, of v,
and a descendant w; of we such that v}, and w} are Pgy-similar, for some Q C
{1,...,1’!},'@'2“— L

Proof. By Lemma 7, it suffices to find a descendant v’ of v and a descendant w’
of w s.t. v/ and w' are Q-similar and o(c, v}) and o(c, w;) are Pg-equivalent.

Let v = u - (a) and w. = u. - (b), where a i an atomic step taken by pi,
and b is an atomic step taken by pj. Let reg; be the register that p; accesses in
a, and regs be the register that p; accesses in b.

Case 1: One of the two steps a,b is a read step.
Suppose w.1.o.g. that the step a taken by p; is a read step. Let Q={1,...,n}\
{it, v = w=wu.(j) and ¢/ = v - (j). Then, o(c,w') and o(c,v) are Pg-
equivalent, and by Lemma 8 (2) « - (j),v - (j) are Q-similar. Therefore wh
and v; are Pg-similar,

Case 2: Both steps a, b are write steps, reg; # rega.
Let w' = w-(§), ' = v-(j), and let Q = {1,...,n}. Then, o(c, ;) and o(v})
are Pg-equivalent, and by Lemma 6 (1), w - (i) and v - (j) are Q-similar.
Therefore w} and v/, are Pg-similar,

Case 3: Both steps a,b are write steps, reg) = regs.
Let w'=w=u-(j),v' =v-(j), and let @ = {1,...,n}\ {i}. Then, a(e, wl)
and o(c, v;) are Pg-equivalent, and like in Case 1, v, and v, are Pg-similar.

Thus, we conclude the following:

Theorem 9. [7] There is no 1-resilient read/write consensus protocol,

24

4.3 Impossibility of a-Resilient Read-modify-Write Consensus
Protocols

Let PR be a given protocol in the read-modify-write model. We prove below
that PR is not a 2-resilient consensus protocol. By the said above, it suffices to
prove that R, 3 satisfies the siblings similarily property.

Lemma10. Let u,v = u- (z'),'w = u - (j) be vertices in T, 2, and let u., v, w,
the corresponding vertices in T(Rp 2(c)). Then there is a descendant v, of v,
and a descendant w', of w. such that v, and w, are Pg-similar, for some Q C

{1,...,!’3},|Q|2ﬂ—2.

Proof. Let ug, v, we be the images of u,v,w in T(R, ;). Let v, = u - (a) and
we = te « (B), where a is the step taken by p; and b is the step taken by p;.
Let regy be the register that p; accesses in a, and regy be the register that p;
accesses in b,

We have to show that v, and w, have descendants v/ and w! which are
Pg-similar for | Q |2 n—~2.

Case 1: reg; # rega.
Let w' = w- (i) and ¢' = v- (j), and let @ = {1,...,n}. Then o(e, w;) and
o(c,v}) are Pg-equivalent, and by Lemma 6 (1) v’ and v’ are Q-similar.
Therefore w!, and v), are Pg-similar.

Case 2: regy = rega = reg, the value of reg in o(c, u.) is equal to its value in
o(e,v.).
Let w' = w and v/ = v-(j), and let @ = {1,...,n}\ {i}. Then o(c,w))
and o(c,v.) are Pg-equivalent, and by Lemma 6 (2) w',?’ are @Q-similar.
Therefore w, and v, are Pg-similar.

Case 3: regy = regs = reg, the value of reg in o{c, u,) is equal to its value in
o{c, w,).
Similar to Case 2.

Case 4: reg; = rege = reg, the value of reg in o(e, u,) is not equal to its value
in o(c, v.), and is not equal to its value in o(c, we). '
Let Q@ = {1,...,n}\{4, 5}. Since reg is a one bit register, its value in o(c, v} is
equal to its value in o(¢, w.). Hence, o(c, v.) and o(e, w.) are Pg-equivalent,
and by Lemma 6 (3) v and w are Q-similar. Therefore v, and w. are Pg-
similar.

Lemma 10 implies the following;:

Theorem 11. [7] There is no 2-resilient read-modify-write consensus protocol,
for n > 3 processors and one bit shared registers.

5 The Message Passing Model

In the shared memory models studied in the previous section, in each given
configuration, each processor could take a single atomic step. This is not the

25

case in asynchronous message passing models, where the atomic step taken by
a processor in a given configuration may depend also on the messages delivered
to it. Thus, in order to make the mapping of schedules to runs well defined, one
has to specify, for each configuration ¢ and each processor p, which messages
which are destinated to p in ¢ are delivered. By choosing appropriate policies for
this specification, one imposes various restrictions on the resulted runs. These
restrictions are translated to restrictions on the resulted closed sets of admissible
runs, and thus to sharper impossibility results.

5.1 The Model

In message-passing systems, processors communicate by sending each other mes-
sages along communication links. Each communication link delivers messages
from processor p; to processor p; (1< 4,j < n) in a FIFO order.

A configuration of the system consists of the internal states of the Processors
and the contents of the communication links. An initial configuration is a con-
figuration in which every processor is in an initial state, and the communication
links are empty, except for wakeup messages: for each processor p, the link from
p to itself contains a wakeup message.

A processor p is non-faulty in a run if it takes infinitely many steps in this
run, and all its messages to non-faulty processors are eventually delivered. A
processor p is faulty in a run if it takes only finitely many steps in this run, or if
from some point on, no message of p is ever delivered ([6], [2]). A run is n —¢-fair
if at most ¢ processors are faulty in it.

Next, we present two types of mappings of schedules to runs of message
passing protocols: the first type is “processor oriented”, which, similarly to the
mapping we used in the shared memory model, maps each occurrence of an in-
teger i to an atomic step of processor p;. The second type is “message oriented”,
which maps each occurrence of ¢ to an atomic step in which a message of p; is
delivered. Mappings of the former type provide impossibility results similar to
ones achieved in [5], while mapping of the latter type provide new impossibil-
ity results. In the Appendix we use a variant of message oriented mapping to
strengthen one of our results.

5.2 Impossibility of Consensus via Processor Oriented Mappings

A processor oriented mapping is a mapping My, which maps each pair of an
initial configuration ¢ and a schedule s = (s1,83,---) to a run r = (g;,ay, - 3,
where a; is an atomic step of processor Ps;. In the case when a; involves the
receiving of message(s), Mpr,c must specify which of the messages sent to p,,
but not yet received (if there are any) are delivered in a;. By varying the rules
specifying these messages, one obtains various extensions of the basic impossi-
bility result of [6]. T'wo possible rules, which can be used to obtain impossibility
results appearing in [5], are:

— Deliver to p,, all the messages that were sent to it, but not yet received.

26

— Deliver to p,, the first message that was sent to it, but not yet received.

When using processor oriented mappings, it is convenient to describe the
content of the communication links as follows: Each processor p has a message
buffer of incoming messages, buf_in,, which contains all the messages sent to
p, but not delivered yet. The specific order in which the messages are stored in
buf.in, depends on the model studied.

We now apply a processor oriented mapping for proving one of the impos-
sibility results of [5]: We show that there is no 2-resilient consensus protocol in
a model where: (a) an atomic step of a processor p consists of receiving all the
messages sent to p but not yet received, and then sending at most one message,
and (b) there is a global FIFO order on incoming messages, meaning that the
messages delivered to each processor are ordered according to the time they were
sent (i.e., that buf_in, is a queue).

Formally, Let ¢ be an initial configuration and s = (8y, 82, + *) be a schedule.
The run r = Mp,..(c, 8) is defined by defining, for each £ > 0, the prefix PO =
Mproc(c, 81), as follows: -

~ Mproc(c,e) =r® =¢,

— Let Mproc(c,80) = +® = (a1,-+-,ar). Then Mproo(c, s+ = r(t41) =
v(®) . (agy1), where agyq is the atomic step taken by processor p,,,, from the
configuration o(c, {9}, in which it receives all the messages sent to it but

not yet received (if there are any), ordered according to the time they were
sent.

Let PR be a protocol in the above model. The set R, s of admissible runs
of PR which we assume in our proof is the union [}, R, 5, taken over all initial
configurations ¢, where:

2 = {Mproc(c,8) | 8 € Spa }

Mpyoc defines for each configuration ¢ an isomorphism from T, 2 to T(R;';'z).
The image of a vertex u € T, 7 under this isomorphism is denoted by u..
Ry,,3 i8 a closed set of n — 2-fair runs by the definition of the mapping Mp,.. and
the fact that S, 2 is an n — 2-fair scheduler.

In order to prove that R, 3 satisfies also the instial similarity and siblings
similarity properties we need one more definition and lemma.
Definition: Configurations ¢; and c; are Pg-equivalent, for Q@ C {1,...,n}, if
for each processor p € Pq: p is in the same internal state in ¢; and in ¢z, and
the contents of buf_in, is the same in ¢; and in c;.

Lemma12. Let ¢; and co be Pq-equivalent configurations, and lel 8 be a Q-
schedule. Then the runs r1 = Mproc(c1,8) and r2 = Mproc(c2,8) are Pg-runs

which are Pg-equivalent.

Proof. Similar to the proof of Lemma 7.

27

R o satisfies the initial similarily property by lemmas 12 and 4, and by the fact
that two initial configurations in which each processor p € Pg has the same input
are Pg-equivalent. Next we prove that R, j; satisfies also the siblings similarity
property. :

Lemma 13. Let u,v = u-(i) and w = u-(j) be vertices in T}, 4, and let u,, v,, w,
be the corresponding vertices in T(RY, ;). Then there is a descendant v} of v,
and a descendani W, of w. such that v] and w) are Pg-similar, for some Q C

{1!"')n}tIQIZn—2'

Proof. By Lemma 12, it suffices to find a descendant v’ of v and a descendant
w of w s.t. v' and w' are Q-similar, and the configurations o(c, v’) and o(c, w})
are Fg-equivalent.

Let v, = u, - (a) and w, = u, - (b), where a and b are atomic steps executed
by pi and p; respectively. We consider two cases:

Case 1: Any message sent in a or b (if at all) is destinated to p; or to p;. Let
v = v and w' = w, and let @ = {1,...,n}\ {i,j}. Then for every k € @,
both py and buf.in,, are in the same state in o(c,v.) and in o(ec, w}), hence
o(c,v}) and o(e, w,) are Pg-equivalent. Also, by Lemma 6 (3) ¢/ and w’ are
(}-similar. Therefore v} and w/ are Pg-similar.

Case 2: Not Case 1. Then w.l.o.g. p; sends a message to pi for k & {i, j}. Let
v =v-(j) and w’ = w, and let @ = {1,---,n}\ {4, k}. Then for every £ € Q,
both pe and buf.iny, are in the same state in o(c,v.) and o(c, w’), hence
o(c, v;) and o(c, w;) are Pg-equivalent. Also, by Lemma 6 (2) v* and w' are
Q-similar. Therefore v, and w! are Pg-similar.

From Lemma 13 above we get the following:

Theorem 14. [5] There is no 2-resilient consensus protocol for a message-passing
model, in which there is a global FIFO order on incoming messages of each
processor, and an alomic step consists of receiving all the messages sent 10 a
processor and sending al most one message.

5.3 Impossibility of Consensus via Message Oriented Mappings

In this subsection we present impossibility results based on message oriented
mappings of schedules to runs. Informally, a message oriented mapping maps
each occurrence of an integer i to an atomic step in which an undelivered message
of p; (if there is one) is received, To make the mapping well defined, we assume
that all the outgoing messages of each processor are received in the order they
are sent. Thus, the runs obtained by this mapping maintain a global FIFO order
on the oulgeing messages of each processor.

The content of the communication links is now specified as follows: Each
processor p has a message buffer of outgoing messages, dbuf_out,, which is a
queue containing all the messages sent by p, but not delivered yet, ordered in

28

a FIFO order. The wakeup message to p is assumed to be the first message in
bu f outy.

An atomic step of a processor p consists of (a) receiving some message m
that was sent to p but not received yet, and (b) sending messages to all the
processors (including itself). Thus, in each given configuration, an atomic step
can be specified by a pair (p, m) of the active processor p and the message m it
receives. In addition, an atomic step of a processor p may also be a null step,
which does not change the system configuration, and is denoted by (p, ¢). Note
that our definition of atomic step implies that each non-faulty processor sends
infinitely many messages in a run. '

We now define the mapping, called My, of schedules to runs in this model.
Given an initial configuration ¢ and a schedule s = (sy,82,---), the run r =
Mmsy(c, 8) is defined by defining, for each £ > 0, the prefix) = Mpsg(c, s,
as follows:

— Mpyg(e,e) =r® =

— Let Mpyz(c,8®) = r® = (ay, +,6¢). Then Mpmgy(c, s¢+V) = #(HH1) =

(. (ag41), where agyy = (¢,m), where m is the first undelivered message
in buf_outp, " and g is the destination of m. If bu f.,outp,m is empty in

a(c,r9), then aj41 = (P4, #), the null step taken by p,,,, .

Observe that the run M,,,,(c,s) defined above maintains global FIFO on
outgoing messages, and that if s is fair for i, then p; is non-faulty in My,4(c, 8)
(and hence if s is n — t-fair, then Mpm,,(c, 8) is a n — ¢-fair run).

As in the previous cases, the set R, 1 of admissible runs of PR is the union
U, RS 1, taken over all initial configurations ¢, where:

p1 = {Mpsg(c,8) |8 € Snp }

The rest of the proof is carried out in a way similar to the previous proofs:
Definition: Configurations ¢; and ¢y are Pg-equivalent, for Q C {1,...,n}, if
for each processor p € Pg: p is in the same internal state in ¢; and in ¢3, and
the contents of buf _out, is the same in ¢; and in e3.

Lemmal5. Let ¢i and ¢z be Pg-equivalent configurations, and let s be a Q-
schedule. Then the runs ri = Mm.y(c1,8) and ro = My, (ca,8) are Pg-runs
which are Pg-equivalent,

Proof. Similar to that of Lemma 12

Ry, satisfies the initial similarity property by lemmas 15 and 4, and by the fact
that two initial configurations in which each processor p € Pg has the same input
are Pg-equivalent. Next we prove that R, ; satisfies also the siblings similarity
property.

Lemma16. Let u,v = u- (i), w = u - (j) be vertices in Ty, 3, and let u,, ve, w,
be the corresponding vertices in T(RY, |). Then there is a descendant v of v,
and a descendant w, of w. such that v, and w, are Pg-similar, for some Q@ C

{1,...,“},’QIZTJ—1.

29

Proof. By Lemma 15, it suffices to find a descendant v of v and a descendant
w' of w s.t. v’ and w' are Q-similar, and the configurations o(c, v}) and o(c, w’)
are Pg-equivalent.

Let v = uc - ((psr, m1)) and w, = u, - ((pjr, m3)).

Case 1: ¢ # j, and both m;, m3 are not ¢, Let v/ = v- (j) and v’ = w . (i)
(and hence], = u; - (pir, ma), (pys, ma)) and wh = s « ((pyr, ma), (o m1)))
and let @ = {1,...,n}. Then, o(c,) and o(c, v}) are Pg-equivalent, and
by Lemma 6 (1) ¢’ and w’ are @-similar. Therefore v, and w, are Pg-similar.

Case 2: ' = j' = k, and both m; and m; are not ¢. Let v/ = v-(j) and v’ = w-
(i) (and hence v = ue-((pr, m1), (P, m2)) and w; = tq-((pr, m2), (7, ml)))
and let @ = {1,...,n}\ {k}. Then, o(c, w}) and o(ec, v}) are Pg-equivalent,
and by Lemma 6 (1) v' and w’ are @-similar, Therefore v} and w! are Pg-
similar.

Case 3: m; = ¢ or my = ¢. Suppose w.lo.g that my = ¢. Let v = v . (j),
w' = w (and hence v = u. - ((pi, 8), (pjr, m2)) and W) = u. - ((pjr, Mm2)))
and let @ = {1,...,n}\ {i}. Then, o(c, w}) and o(c,v}) are Pg-equivalent
(actually, they are {p1,...,pn}-equivalent), and by Lemma 6 (2) v and »’
are @-similar. Therefore v/, and w/ are Pg-similar.

From Lemma 16 above we get the following:

Theorem 17, There is no 1-resilient consensus protocol for the message-passing
model with the global FIFO property.

A stronger version of Theorem 17 above is given in the Appendix.

6 Conclusion and Further Research

In this paper we introduced the concept of closed sets of runs, which are sets of
runs that can be described as the paths of an infinite tree of bounded degree.
Then we introduced the concept of closed schedulers, and presented a unified,
model independent technique to construct closed sets of runs of t-resilient pro-
tocols by using closed schedulers.

The sets constructed by our technique preserve many of the properties pos-
sessed by the sets of all runs of {-resilient protocols, which makes these sets a
convenient tool for proving properties of such protocols. To demonstrate this, we
used these sets to provide unified proofs of the impossibility of -resilient con-
sensus protocols in few distinct models of distributed computing, and obtained
some new impossibility results,

The full applicability of closed sets of runs, and in particular of the sets
constructed by the closed schedulers S, introduced in this paper, is yet to
be explored. It is anticipated that the simple combinatorial structure of these
schedulers will make them a useful tool for studying further problems related to
t-resilient protocols.

30

References

1.

2.

3.

H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asyn-
chronous environment. Journal of the ACM, 37(3):524-548, 1990.

Q. Biran, S. Moran, and 8. Zaks. A combinatorial characterization of the dis-
tributed 1-sclvable tasks. Journal of Algorithm, (11):420-440, 1990,

S. Chaudhuri. Agreement is harder than consensus: Set consensus problems in to-
tally asynchronous systems. In Proceedings of 9-th PODC Conference, pages 311-
324, 1990.

. Kbnig. D. Theorie der endlichen und unendlichen graphen. Liepzig 1936. reprinted

by Chelsea, 1950.

. D. Dolev, C, Dwork, and L. Stockmeyer. On the minimal synchronism needed for

distributed consensus, Journal of the ACM, 34(1):77-97, January 1987,

. M. J. Fischer, N. A. Lynch, and M. 8, Paterson., Impossibility of distributed con-

sensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985,

. M.C. Loui and H.H Abu-Amara. Memory requirements for agreement among unre-

liable asynchronouns processes. Advances in Compuling Research, 4:163-183, 1987.

31

APPENDIX

A A Modified Message Oriented Mapping

The mapping M, of Subsection 5.3 has the following disadvantage: it may
provide runs in which out of the messages sent by a (faulty) processor in one
atomic step, some messages are delivered and others are not. Here we modify
that mapping to overcome this disadvantage. Thus, the resulted runs satisfy
atomicity of broadcast, i.e.: for each atomic step of a processor p, either all the
messages sent by p in this step are delivered, or none of them is delivered.
Definition: A package P is a sequence of all the messages sent in one atomic
step. A package P is used in a prefix r’ of a run r if some but not all of the
messages in P were delivered in »/.

Note that in any prefix of a run that maintains a global FIFO order on the
outgoing messages of each processor, each message buffer bu f-out, contains at
most one used package.

Definition: A run r satisfies the atomic broadcast property if for each package
P sent in r, either all the messages in P are delivered in r, or no message from
P is delivered in r.

We now modify the mapping M,,,, to a new mapping, M psg, which maps a
pair (¢, 8) of an initial configuration ¢ and a schedule s to a run with the atomic
broadcast property. Mom,, is constructed in two steps: first we map the schedule
8 to a sequence called &, and then we apply a (variant of) message oriented
mapping to 7.

Definition: Let s = (81, 83, - - -) be a schedule, and let sy = i. Then s, is an odd
occurrence of i in 8 if ¢ appears an odd number of times in (9 = (81, +, 82).
Otherwise, s; is an even occurrence of i in s.

Note that for each 4, the occurrences of i in # are odd and even alternatingly.
We say that s, is an odd (even) element of s if it is an odd (even) occurrence
of some i in s, 8¢ is the m — th odd (even) element of s if it is an odd (even)
element of &, and) contains m odd (even) elements.

Given an initial configuration c and a {1, - - -, n}-schedule s, we describe below
how the run r = Mp,(c, 8) is constructed. Intuitively, M msg acts on the odd
elements of s as the mapping M, does, while the even elements of s are used
to guarantee that r satisfies the atomic broadcast property.

As a first step in defining M (¢, 8), we map s to a sequence 5 = (31,82,)
as follows:

— if 8¢ is an odd element of 2, then & = (s, odd); else:
— let s, be the m — th even element of 5. Then ; = (m — 1(modn) + 1, even).

Example: Let n = 3 and s = (2,1,2,2,1,2,--). Then sy, 85 and s34 are odd ele-

ments of s and 3, 55 and 8¢ are even elements of s. Thus, 5 = ((2, odd), (1, 0dd), (1, even),
(2, 0dd), (2, even), (3, even),- -).

The property of & needed for our construction is that for every i € {1,...,n},

(%, even) occurs infinitely often in 3, and (i, odd) occurs infinitely often in 3 iff £

32

occurs infinitely often in s. Informally, each occurrence of (i, odd) in 5 is mapped
to an o-type step, which delivers the first undelivered message in buf_out,,. This
guarantees that if § occurs infinitely often in s then p; is non-faulty in M, (c,).
An occurrence of (i, even) is mapped to an e-iype step, which delivers a message
of p; only if it is in & used package in buf_out,.. This guarantees that all the
messages from a used package are eventually delivered in M ,4(c, &) (even if p;
is faulty).

Formally, gwen an initial configuration ¢ and a schedule s = (51,39, -), the
run r = Mp,,(c,s) is defined by defining, for each £ > 0, the prefix r¥) =
Mmay(c, 89), as follows:

- _M_mugc)=r®=¢

— Let Mmsg{c,sP) = vl = (ay,--,ac). Then My (e, s+D) = 1) =
79 (agg1), where azy is defined as follows:
If Bp41 = (k, odd) for some k then az4y is an o-type step (g, m), where m is
the first undelivered message in buf.out,, and ¢ is the destination of m; if
buf_out,, is empty then aryy = (ps, 9).
Otherwise 8,1 = (k, even) for some k. In this case asyy is an e-type step,
defined as follows: If in the configuration o (¢, r(®)), buf_out,, contains a used
package P, and there is no odd occurrence of k after the last even element
of 8), then acyy = (g, m), where m is the first undelivered message in ’P
and ¢ is the destination of m. Otherwise, agye1 = (pi, ¢).

Lemma 18. For each configuration ¢ and for each sequence s, M,n,4(c,5) is a
run which salisfies the atomic broadcast property.

Proof, Let r = _ﬁm.,(c, 8). To see that r satisfies the atomic broadcast property,
consider any Processor p;. ¥ { occurs mﬁmtely often in s then (¢, odd) occurs
infinitely often in &, and by the mapping M,y every message sent by p; is
eventually delivered. So assume that ¢ occurs only finitely many times in s.

If ¢ never occurs in s then no message of p; is ever delivered and we are done.
Otherwise, there is an & in 3 which is the last occurrence of (i, 0dd) in 5. 5 is
ma,pped by M, mag ON AN atomic step in which a message m from some package
P in buf outy,; is delivered. Since 3; is the last occurrence of (4,0dd) in &, no
messages of packages that were sent by p; after P are delivered. Thus, we only
need to show that all the messages of P are eventually delivered. Assume that
following m there are k > 0 messages in P. These messages are delivered in the

atomic steps corresponding to at most k + 1 occurrences of elements of the form
(i, even) which follow & in 7.

In order for our proof to apply for the new mapping Jl_/f,,,,g, we need to
strengthen the notions of similarity and equivalence as follows,
Definition: Let Q@ C {1,...,n}. Vertices u and v in T}, ; are strongly Q-similar,
iff there exists a Q-chedule 8= (81,89, s.t.

1. u-sand v-s arein Sy = Paths(T,). :
2. For each s; in s, 8¢ is mapped to the same element in @3 and 7~ 3.

33

Definition: Configurations ¢; and ¢, are strongly Po-equivalent, for Q C {1,...,n},
if ¢; and cy are Pg-equivalent, and in addition, each message buffer buf_out,
contains a used package in ¢; iff it contains an identical used package in ;.

Let R, 1 be the set of runs of PR defined by the union |J, ﬁ:,’l, taken over
all initial configurations ¢, where:

R:,l = {Emag(c: 3) | s € Sn,l }

M 1,54 defines for each configuration ¢ an isomorphism from Th1 to T(Efm).
The image of a vertex u € T,, 1 under this isomorphism is denoted by u..

We need a stronger version of Lemma 15.
Lemmal9. Let u and v be strongly Q-similar vertices in T, 1. Let ¢ be an
initial configuration and let u, = Tll_m,,,(c,u) and v, = ﬁm,,(c, v). If o(c, u,)
and o(c,v.) are strongly Pg-equivalent configurations, then u. and v, are Pg-
similar.

Proof. Similar to that of Lemma 15.
We also need the following modification of Lemma 6:

Lemma20. Let n > 2,0 <t < n—1. Then for each u € T, ¢, and for each i,
s.t. both u-(i) and u-(j) are in Ty, 1, 4 holds thai: For each @ C {1,...,n},|Q|>
n—1i,

1. u-(4,7) and u-(j,{) are strongly Q-similar.
2. Ift>1,i¢Q, and i is an odd element of u - (i}, then u - (i,5) and u - (j)
are strongly Q-similar.

Proof. Similar to that of Lemma 6, using the observation that for each k €
{1,---n}, k occurs in u - (§,5) and in u - (j,4) the same number of times, and if
k # i, then k occurs in u - (i,) and in u - (j) the same number of times.

We sketch below a proof of a stronger version of Lemma 16, which is needed
for our generalization.

Lemma2l. Let u,v = u-(i),w = u-(j) be vertices in a1, and let u,, v, w,
the corresponding verlices in T(.R,c,,l). Then there is a descendant v, of v, and
a descendant w,, of w. such that v\ and w) are Pg-similar, for some Q C

{1,-..,”},]@!21‘1—1.

Proof. 1f i is an odd element of v and j is an odd element of w then the proof

of Lemma 16 applies, with minor modifications.

If i is an even element of v and j is an even element of w then, by the definition of

Minsg, ¥ = u-(i,j) and w’ = u-(j,) are mapped by M, to identical runs, and

hence, by lemmas 19 and 20 (1), v} and w) are Pg-similar for Q@ = {1,-.-,n}.
The only case left to consider is when i is an odd element of v and j is an

even element of w or vice versa. W.l.o.g. let i be an odd element of v and J

34

be an even element of w. Then the last element in ¥ is (f, 0dd) and the last
element in & is (k,even) for some k € {1,---,n}. Let v, = u, - ((pir, 1)) and
let we = u, - ((pr', Mm2)). As before, we let v/ = v - (j) and ' = w - (7).

Assume first that k # i. Then v = v, - ((pxr, m2)) and w! = w, . ((pir, m1)).
In the case that both m; and mgy are not ¢, the proof is similar to cases 1 and 2
of Lemma 16. In the case that my = ¢ the proof is similar to Case 3 of Lemma
16. So we are left with the case where ma = ¢ and m; # ¢. In this case both v/,
and w), are obtained by extending u/, by the same non-null step (pi:,m1), and
hence (¢, v.) and o(c, wl) are strongly Pg-equivalent for @ = {1, --,n}. Hence
v}, and w!, are Pg-similar for @ = {1,---,n}.

Assume now that & = 4. Then the definition of -ﬁm,g implies that v, =
ve - ((pi, ¢)). We consider two cases:
(a): mz # ¢. Then my = m; is the first message in buf_out,,, and the con-
figurations o(c, v}) and o(c, w.) are strongly Pg-equivalent for @ = {1,..-,n}.
By Lemma 20 (2) v' and w are strongly Q-similar for @ = {1,---,n}\ {¢}, and
hence v, and w, are Py-similar for Q = {1,---,n}\ {i}.
(b): my = ¢. Then w, = w. - ((pir,m1)), and hence o(e,v}) and o(c, w’) are
strongly Pg-equivalent for @@ = {1,-.-,n}. This implies that v} and w/ are Q-
similar, for @ = {1,-.-,n}.

From Lemma 21 above we get the following generalization of the main result
in [6]:

Theorem 22. There is no 1-resilient consensus protocol for the message-passing
model in which there is a global FIFO order on the ouigoing messages of each
processor, and which satisfics the atomic broadcast property.

This result should be contrasted with the fact that when one assumes a global
FIFO order on the incoming messages and atomic broadcast, the consensus is
solvable in the presence of arbitrarily many failures by the following simple
protocol: each processor broadcasts its input to all the processors (including
itself), and decides on the value of the first message it receives,

Efficient Atomic Snapshots Using Lattice
Agreement
(Extended Abstract)

Hagit Attiya!, Maurice Herlihy?, Ophir Rachman!

! Department of Computer Science, the Technion.
? DEC Cambridge Research Laboratory.

Abstract. The snapshot object is an important tool for the construc-
tion of wait-free asynchronous algorithms. We relate the snapshot object
to the lattice agreement decision problem. It is shown that any algo-
rithm for solving lattice agreement can be used to implement the snap-
shot object. Several new lattice agreement algorithms are presented. The
most efficient is a lattice agreement algorithm (and hence, an implemen-
tation of snapshot objects) using O(log? n) operations on 2-processor
Test&iSet registers, plus a linear number of operations on atomic single-
writer multi-reader registers.

1 Introduction

The implementation of concurrent objects and the solution of decision problems
are two major themes in the investigation of wait-free computation. There is a
significant difference between these two themes. Concurrent objects are shared
data structures which are accessed repeatedly and concurrently by processors,
¢.g., atomic read/write registers, snapshot objects and queues. In contrast, in
a decision problem, processors start with inputs and have to halt with outputs
that satisfy certain conditions, e.g., consensus and renaming. Long-lived concur-
rent objects are more useful than decision problems in practical applications of
wait-free computing, e.g., in distributed operating systems. On the other hand,
decision problems are intuitively simpler than concurrent objects, since each
processor “enters the game” only once.

One of the basic concurrent objects is the atomic snapshot object. A snapshot
object is a shared data structure partitioned into segments. Processors can either
update an individual segment, or instantaneously scan all segments of the object,
A snapshot object simplifies the design and verification of a number of important
concurrent shared-memory algorithms, by reducing the possible interleaving of

Part of the work of the first author was performed while visiting DEC Cambridge
Research Laboratory. The first and the third authors are partially supported by B.
and G. Greenberg Research Fund (Ottawa) and by Technion V.P.R. funds. Con-
tact author: Hagit Attiya, Department of Computer Science, Technion, Haifa 32000,
Israel. Email: hagit@ca.technion.ac.il.

36

the exccution. Atomicsnapshot objects have been used for randomized consensus
[5], approximate agreement [9], bounded timestamping {16], and the construction
of wait-free concurrent objects [6].

In this paper, we consider a new decision problem, lattice agreement. In this
problem, processors start with elements from some partially ordered lattice, and
must (non-trivially) decide on new elements that are comparable in the lattice.
Besides being interesting on its own right, lattice agreement is closely related to
snapshot objecis. Given a snapshot object it is straightforward to solve lattice
agreement: Each processor updates the snapshot object with its input value; it
then scans the snapshot memory and returns the join of all the inputs it reads.?

Our first major contribution is to show that the converse is also true. That is,
given any solution to lattice agreement, it is possible to construct an implemen-
tation of a snapshot object. Furthermore, the transformation uses only a linear
naber of additional operations on atomic read/write registers. Thus, we show
that the number of operations required to implement a snapshot object is equal
to the number of operations required to solve lattice agreement (plus a linear
number of atomic read/write operations). 4 This allows research to focus on the
later problem, which is simpler, in our opinion.

Decision problems were previously used to prove impossibility results for
long-lived objects [17], or to show lower bounds on the complexity of imple-
menting long-lived objects [19, 11). Also, solutions to a specific decision prob-
lem, consensus, can be uged to implement any object [18]. Intuitively, this can be
achieved because consensus is universal for the class of problems solvable in the
asynchronous wait-free model of computation [12, 13, 17]. However, consensus is
a very strong decision problem; in particular, it has only randomized solutions in
this model. Thus, it is interesting to relate long-lived objects to weaker decision
problems, i.e., those that can be solved deterministically or more efficiently than
consensus, To the best of our knowledge, the transformation from lattice agree-
ment to snapshots is the first time a decision problem, weaker than consensus,
is shown to yield upper bounds for long-lived objects.

Our second major contribution is a linear algorithm for solving lattice agree-
ment, and hence for implementing snapshot objects. This algorithm uses 2-
processor Tesi€Sel regisiers, as well as atomic single-writer multi-reader reg-
isters. .

ln the past, atomic snapshot algorithms have been proposed by Ander-
son [5] (bounded registers and exponential number of operations), Aspnes and
Herlihy [6] (unbounded registers and O(n?) operations), and by Afek, Attiya,
Dolev, Gafi, Merritt, and Shavit [1] (bounded registers and O(n?) operations).
Kirousis, Spirakis, and Tsigas [21] give an O(n) atomic snapshot algorithm for
a single scanner, and Pwork, Herlihy, Plotkin, and Waarts [15] give an efficient

% This relationship was also noted by others f14], }
% As presented in this abstract, the transformation from lattice agreement to long-lived
snapshot object is highly expensive in memory requirements, and uses an unbounded

number of memory blocks. In the full paper we show how these high memory costs
can be drastically reduced.

37

non-linearizable snapshot scan. All these snapshot objects are constructed from
atomic read/wrile registers only,

Our algorithm for lattice agreement is based on a crash-tolerant synchronous
algorithm. This synchronous algorithm is presented in the message-passing
model; in this model, it requires logn rounds. The algorithm does not fully
exploit the synchronization power available in this model. We then show how
this mild synclironization can be achieved by one-lime counting networks. (A
special case of counting nefworks introduced in [7].) Since there are wait-free
asynchronous implementations of one-time counting networks (using 2-processor
Test&Set registers), this yields an asynchronous algorithm for lattice agreement,
and hence, for implementing snapshot objects.

The exact implementation of this general idea results in two asynchronous
algorithms. The first algorithm that we introduce requires a linear number of
operations. Unfortunately, it uses dynamic allocation of processors to registers.
Namely, the identity of the processors that access certain registers in the shared
memory, is determined dynamically during the algorithm’s execution. The sec-
ond algorithmn is less efficient and requires O(nlog® n) operations, but does not
use dynamic allocation.,

Both asynchronous algorithms use 2-processor Tesi&Set registers, as well as
atomic read/write registers. In order to use read/write registers only, one can use
randomization to implement a 2-processor register from atomic registers with
constant expected overhead [23, 18]. Thus, the above algorithms can be viewed
as randomized algorithms, using only read/write registers, and requiring linear
or O(nlog® 1) expected number of operations. Note that these randomized algo-
rithms never err, that is, when (and if) they halt, their output is always correct,
(unlike the algorithms in [21], that may produce incorrect outputs). Chandra
and Dwork [10] has independenily obtained a similar result; their methods are
completely different and are based on randomized consensus,

The rest of this paper is organized as follows. In Section 2, we define lattice
agreement and the snapshot object. In Section 3, we present the transformation
from a laltice agreement algorithm to a snapshot object. In Section 4, we de-
scribe the synchronous lattice agreement algorithm, In Section 5, based on this
algorithm, we present the two asynchronous lattice agreement algorithms. We
conclude and suggest directions for further research in Section 6.

2 Lattice agreement and Snapshot Objects

In this section we formally define lattice agreement and the snapshot object.
Fix a sel § with partial order <. For some subset T C 8, z € § is an upper
bound of T if, for all « € T, @ < . A least upper bound of T is an upper bound
z of T', such that if y is an upper bound of T, then = < y. The least upper
bound of T" is denoted join(T). The lower bound and the greatest lower bound
are defined similarly. A complete lattice is a partially ordered set S such that

for every nonempty subset T' of S the least upper bound and the greatest lower
bound of 7" exist.

38

Consider a system with »n processors, denoted Py,..., Py. In the laitice agree-
meni problem, each processor P; is assigned some input z;, and must decide on
some output ;. Both input and output values are elements from a complete
lattice with partial order <. An algorithm that solves lattice agreement must
salisfy ihree conditions:

Validity{a): For all i, »; < y;.
Validity(b): For all ¢, y; < join(zy,...,2n).
Comparability: For all ¢ and j, either y; < y; or gy < w.

An atomic snapshot object is partitioned into n segments (where only proces-
sor F; may write to the ith segment). A snapshot object supports two operations,
scan and update(v). The scan operation allows a processor to obtain an instan-
taneous view of the segments, as if all n segments are read in a single atomic
step. A scan operation returns a vector view, where view|i] is a value of the ith
segment. The update(v) operation allows a processor to write the value v into
its segment.

An implementation of the snapshot object should be linearizable [20]. That is,
any exccution of scan and update operations, should appear as if it was executed
sequentially in some order that preserves the real time order of the operations.
In more detail, define the partial order — on operations in some execution:
op1 — opz if (and only if) the operation op, has terminated before the operation
opz has started. The partial order — reflects the external real time order of
non-overlapping operations in the execution. For the snapshot implementation

. to be correct, we require that there exists a total order = of the sean and update
operations, such that:

a. = exiends the real time order of operations as defined by the partial order
— and

b. => maintains the sequential semantics of the snapshot operations; ie., if view
is returned by some scan operation, then for every segment i, view[i] is the

value written by the last update to the zth segment which precedes the scan
operation in =,

In order to relate lattice agreement to the snapshot object, it is convenient to
regard the views that are returned by scan operations as elements of a lattice.
This is done by associating a sequence number with each segment, which is
initially 0. The sequence number of a segment is incremented whenever the
seguient is updated. For clarity of presentation, we identify a value with the
sequence number associated with it. For two views view; and views, view; <
views if and only if for all ¢, view;[i] < viewy[i]. Intuitively, the partial order
defined on views reflects the fact that one view is “later” than the other, that
is, for all segments, it contains values that are more (or equally) updated.

3 From Lattice Agreement to Snapshot Objects

In this section, we show how an algorithm that solves lattice agreement can be
used to implement a snapshot object.

30

To implement the snapshot object, we associate with each segment a
read/write register that contains the latest value written to this segment. It is
fairly straightforward to implement a snapshot object using lattice agreement if
each processor executes at most one operation: In a scan operation, each proces-
sor reads all registers and performs lattice agreement using the vector obtained
as input. It returns the value it outputs in the lattice agreement algorithm. Each
updater writes its value to the register associate with its segment, and then fol-
lows the same algorithm as a scan operation. (A similar idea, for a specific lattice
agreement algorithm, appears in [6].)

The delicate issue is how to generalize the above algorithm to the case where
each processor may execute an arbitrary number of operations. The basic idea is
to have an unbounded number of copies of lattice agreement. A processor wishing
to execute an operation joins the highest active copy of the lattice agreement
algorithm, and follows the simple algorithm presented above. If it has already
executed this copy, it activates the next copy of lattice agreement.

The final difliculty is how to assure that operations using different copies
of lattice agreement return comparable values. It can be shown that non-
overlapping operations return comparable values. So, we only need to deal with
overlapping operations. In this case, if after completing lattice agreement, a pro-
cessor discovers that a higher copy of laitice agreement was activated, then it
joins this copy. if, after completing the second copy of lattice agreement, the
processor again discovers it was taken over, it borrows some output of another
processor in this copy. We show that such a value exists, and that it is a valid
value for this operation.

3.1 Detailed Description of the Transformation

In order to describe the transformation, assume we are given a black-boz that
solves lattice agreement. Assume we have an infinite number of copies of this
black-box, denoted by LA;, LAy, ..., The black-box LA; is called the lattice
agreement of round i. _ :

The transformation uses the following shared structures: S, ..., S, are the
registers associated with the segments; S;, associated with the ith segment, is
written by P; and read by all processors. Rjy,.., Ry, is an additional set of reg-
isters, that is used by the processors to hold their current round number. In
addition, for every round r, there is a set of registers, Wi,ry s Var. These regis-
ters are used to hold the views that processors obtain in round r.

The precise code for the scan and update operations of processor P; is given
in Figure 1,

In the scan operation, P; starts in some round (that appears maximal to FP),
and collects a local view by reading Si,...,S,. P; then participates in the lat-
tice agreement of its round, and as a result, obtains a new view. P; then checks
whether other processors have started more advanced rounds of lattice agree-
ment. If not, it returns the result of lattice agreement. Otherwise, P; collecis
a new view and starts lattice agreement again (in the round that now appears

40

operation scan()

1: FIRST_TRY:

1.1z round = maz(maz j=1.n(R;), round +1)
1.2: Ri = round

1.3: collect = read S51,...,5n

1.4: view =execute LAroung With collect as input
1.5: read Ry, ..., Rn

1.6: if found some R; > round

1.7 then

1.8: goto SECOND_TRY;
1.0: else

1.10: Vi,round = view
1.11: return(Vi round)

2: SECOND_TRY:
2.1: round = Mmaz;jm1.n{R;)
2.2¢ R; = round
2.3: collect =read Sy, ..., Sn

2.4: view = execute LAround with collect as input
2.5: read Ry, ..., Rn

2.6: if found some R; > round

2.7 then

2.8: Vi round =some nen empty Vi round

2.9: return(V; rouna)

2.10: else

2.11: Vi,round = view

2.12: return(V; round)

operation update(value)

1: S; = (value, Si.sequence.number + 1)
2: scan()

Fig. 1. Using laitice agreement to implement a snapshot object

maximal to ;). If after the second trial P; again finds processors in more ad-
vanced rounds of lattice agreement, P; returns a view of some processor from
P;'s last round. Otherwise, P; returns the result of the second lattice agreement
algoritbm. ‘

In the update operation, P; updates its register with the new value (and incre-
ments the sequence number of its register), and then executes a scan operation.
Notice that although the formal specifications require only scan operations to
return a value, in our implementation both scan and update operations return

4

some view. This is later used to linearize both the scan and the update opera~
tions.

3.2 Correctuess and Complexity

To prove the correctness of the snapshot object, we explicitly construct a total
order = of the scan and update operations such that:

a. => extends the real time order of operations as defined by the partial order
—+; and

b. = maintains the sequential semantics of the snapshot operations; i.e., if view
is returned by some scan operation, then for every segment i, view[i] is the
value written by the last update to the ith segment which precedes the scan
operation in =.

The views returned by operations are used in order to define =. We start
with some properties of these views,

Notice that a processor can return a view in one of the following ways. First,
it can veturn a direct view, that is, the output of lattice agreement (either in
line 111, or in line 2.12). Alternatively, it can return an indirect view, that is, a
view that was borrowed from some other processor (in line 2.9). We first show
that a value returned by a scar operation, in some round, was returned directly
at least once for this round.

Lemmal. Any processor that relurns a view in round r, either returns a direct
view, or returns an indirect view that is direct for some other processor in round
r.

Lemma2. Consider two operations by processors P; and Py that relurn viewy
and view;, respeclively, Then view; and view; are comparable.

Proof. By Lemma 1, it suffices to prove the lemma for the case view; and view;
were relurned directly. .

Let F; and P; be two processors (possibly the same one) that have directly
returned view; and vicw;, respectively. P; and P; may return their views either
in the same round, or in different rounds.

First, assume P; and P; return view; and view; in the same round, say r.
Since view; and view; are direct, they are outputs of the lattice agreement of
round r. By the comparability property of lattice agreement, view; and view;
are comparable. :

Otherwise, assume that P; returns view; in round r; and P; returns view; in
round r; > r;. Since view; is direct, it is P;’s output from the lattice agreement
of round r;. Without loss of generality, assume F; returns view; in FIRST_TRY.,
Then, in line 1.5, P; finds no processor with round number greater than r;.
Therefore, #; oblains view; before Fj writes r; into the register R;. It follows
that P; obtains view; before P; starts 1o read S, ..., S, in round r;. Therefore,
each entry in view; is smaller or equal to the corresponding entry in P;’s input

42

for the lattice agreement of round »;. By the validity(a) property of lattice-

agreement, and since Pj returns its view directly, it follows that view; > view;.
]

Lemuna 3. Consider two operalions op; and op;j, by processors Py and Fj, that
refurn view; and view;, respectively. If op; — op;, then, view; < view;.

Proof. P; may return view; either directly or indirectly.

Assume that P; returns view; directly in some round r;. By the validity(a)
property of latlice agreement, each entry in view; is greater than or equal to the
corresponding register value that P; reads in r;. But, when F; starts reading the
registers values, op; has already been completed. Therefore, each register value
that Pj reads has a value greater than or equal to the corresponding entry in
view;. It follows that view; > view;.

Otherwise, assume that P; returns view; indirectly. Let r; be the round at
wlich op; was completed. Since op; — op;, P; starts op; in round r; > rq. Then,
since P; returns view; indirectly, it fails to obtain a direct view in r;, enters
SECOND.TRY in some round r; > »;, and fails to obtain a direct view in this
round as well, Consequently, P; copies a view of some processor in r;. By Lemma
1, this view is a direct view of some other processor in r;, say P;. However, Py
starts reading Si,..., S, in rj only after P; starts op; (otherwise, P; would not
have started op; in r} < ry). Since op; — opy, it follows that P reads Sy, ..., Sy
only after op; ended. As in the first case, by the validity(a) property of lattice
agreement, the view returned by Py is greater than or equal to view;. Since P;
returns the same view as Py, it follows that view; > view;.

0

Lemma 4. Let up be an updale operation by FP; that writes the value v, and
relurns vicw;. Then, view;[i] > v.

Proof. P; may return view; either directly or indirectly.

Assume P; returns view; directly. Thus, view; is P;’s output in some lattice
agreement. However, F;’s input to any lattice agreement that it executes in up
always has v in its ith entry. By the validity(a) property of lattice agreement,
view;[i] > v,

Otherwise, assume P; obtains view; indirectly. Thus, it starts up in some
round #}, fails to obtain a direct view in this round, enters SECOND.TRY in
some round r; > r!, and fails to obtain a direct view in this round as well.
Consequently, P; copies a view of some other processor who participated in the
lattice agreement of round r;. By Lemma 1, this view is a direct view of some
other processor in round r;, say Pp. However, P, reads Si,..., S, in round r;
only alter P; writes v to S;, (otherwise P; would not have entered r{ < r; in
FIRST_TRY). Since Py obtains its view directly in r;, and by the validity(a)
property of lattice agreement, the view of P, has a value greater than or equal

to v in its i-th entry. Since P; has the same view as Py, it follows that view;[i] > v.
a

43

In order to define the total order = on all operations, we first order scan
operations, and then insert the update operations. Consider any two scan opera-
tions sc) and scy. If the view returned by sc; (respectively, 8cq) is strictly smaller
than the view returned by ses (respectively, sc,), then sc; = scq (respectively,
8¢y = sc1). Otherwise, if both operations return the same view, then we break
symmetry first by the partial order —s, and if the operations are not ordered
with respect to —, then we break symmetry by the identity of the processors
that execute the operations. Note that this is sufficient, since two operations by
the same processor are ordered by —.

Now, we insert the update operations between the ordered scan operations.
Each update operation that wrote some value v in register S;, is inserted between
the last scan operation that returns a view smaller than v in its ith entry, and
the first scan operation that returns a view greater than or equal to v in its ith
entry. Since scan operations are ordered by their views, each update operation
fits exactly beiween two successive scan operations. Breaking symmetry between
update operations that fit between the same two scan operations is done in the
same manuer as in the scan operations (that is, first by the partial order —,
and then by processor’s identity).

We now prove that the total order = has properties (2) and (b) that are
mentioned at the beginning of this section (and also in Section 2).

The way update operations are inserted between the scan operations, and
the way scan operations are ordered by their views, imply:

Lemma 5. Let sc be ¢ scan operalion that relurns view,., and up be an update

operation by P; that writes the value v. Then, view,[i] > v if and only if up =
se,

Lemma 5 shows that the total order = satisfies property {(b). The following
lemma shows that => satisfies property (a) as well,

Lemma6. The lotal order => extends the partial order —».

Proof. Consider four different cases, according to operation types.

Case 1. Lel sc be a scan operation that returns view,., and up be an update
operation by processor F; that writes the value v and returns viewyy . Assume
that sc — up.

Since sc terminates before up starts, it is clear that view,.[{] < v. By the
definition of =, sc => up.

Case 2. Let up be an update operation by processor P; that writes the value v
and returns viewyp, and sc be a scan operation that returns view,.. Assume
that up — se.

By Lemma 4, vieivyy[i] > v. By Lemma 3, view,, > viewyp, and therefore,
view,.[i]] > v. By the definition of =, up is inserted before sc, which means
that up = se,

Case 3. Let sc; and sc; be two scan operations that return view; and view;,
respectively. Assume that se; — sc;.

44

By Lemma 3, view; > view;. Recall that scan operations are ordered in =
by the views they return. Since — is used to break symmetry between scan
operations with equal views, it follows that sc; = sc;.

Case 4. Let up; and up; be two update operations by F; and P;, which write v
and v;, and return view; and view;, respectively. Assume that up; — up;.
Assume, in the way of contradiction, that up; => up;. When constructing =,
symmetry between updaie operations that fit between the same two scan
operations is first broken by —. Therefore, it is possible that up; = up; only
if there exists some scan operation sc, such that up; = sc = up;. Let view,,
be the view returned by se. The way updates are inserted in = implies that
view,[j] > v; and view,.[f] < v;. However, since up; terminates before up;
starts, Lemma 4 implies that view;[j] < v; and view;[i] > v;. Therefore,
view,, and view; are incomparable, a contradiction to Lemma 2.

Lemrna 5 and Lemma 6 imply the correctness of the snapshot object. The
complexity of the transformation is obvious. Thus, we have the following:

Thoorem 7. Given a latlice agreement algorithm as a black-boz, the above trans-
Jormation yields an atomic snapshot object that requires, per an update or a scan
operation, O(1) executions of the lattice agreement black-box, plus O(n) opera-
tions on alowmic single-wriler mulli-reader regisiers.

4 Synchronous Lattice Agreement

In this section, we describe a synchronous algorithm that solves the lattice agree-
ment decision problem in the presence of crash failures. The ideas of this algo-
rithin are used in the following section to implement an asynchronous wait-free
lattice agreement algorithm.

Although the synchronous algorithm is the base for shared-memory asyn-
chronous algorithms, it is best described using a message-passing model.® In
this model, a processor may send messages to any group of processors in a single
round, and the processors in that group are guaranteed to receive these mes-
sages before the next round. If a processor crashes in a certain round, then only
some (possibly empty) subset of the messages it sent during that round arrives.
Furthermore, this processor will not participate in any of the following rounds.

This synchronous message-passing model is used in [19, 11].

4.1 The algorithm

The syuchronous lattice agreement algorithm is recursive, and employs a divide
and conquer policy.

® The translation of this algorithm to a synchronous shared memory model is
straightforward,

45

At the [irst recursion level, processors are divided into two groups, the subor-
dinated processors, Pi, ..., Pz, and the ordinated processors, Pyy1,..., Py Each
subordinatcd processor sends its input to all ordinated processors. (This takes
one round.) Now, the two groups recursively initiate two independent lattice
agreement algorithms for § processors. In the algorithun for the % subordinated
processors, the inpuis of the processors are their original inputs, In the algorithm
for the § ordinated processors, the input of a processor is the join of its original
input with inputs it received in messages from subordinated processors. (Recall
that the join of a set of lattice elements is their least upper bound.)

At level (logn + 1), each processor is an independent group, and it simply
decides on its current input as its final output.

Theorem 8. The synchronous lattice agreement algorithm satisfies validity(a),
validity(b), and comparability,

Proof. The proof is by induction on the number of processors that participate
in the algorithm. For the induction base, it is obvious that 1-processor algo-
rithm satisfics Lhe three conditions. For the induction step, assume that the two
Z-processor algorithins that are executed in the second recursion level by the
ordinated and the subordinated groups satisfies the three conditions. We prove
that the n-processor algorithm satisfies them as well:

Validily(a): the input of any processor (subordinated or ordinated) for the
Z-processor algorithm dominates its original input. Therefore, since each 2-
processor algorithm satisfies validity(a), the output of any processor dominates
its original input. .

Validity(b): the input of any processor (subordinated or ordinated) for the
%-processor algorithm is a join of some original inputs. Therefore, since each
§-processor algorithm satisfies validity(b), the output of any processor is the
Join of some original inputs.

Comparability: since each 3-processor algorithm satisfies comparability, out-
puts of any two ordinated (or any two subordinated) processors are comparable.
In order to prove comparability of all outputs, we prove that the final output
of any ordinated processor, dominates the final outputs of all the subordinated
Processors,

Any subordinated processor starts the algorithm of its group using its origi-
nal input. Thus, since this algorithm satisfies Validity(b), the final output of any
subordinated processor is a join of some original inputs of subordinated pro-
cessors. Morcover, by the construction of the algorithm, inputs of subordinated
processors that fail during the first round, are transparent with respect to the
algorithm of the subordinated group. Thus, the final output of a subordinated
processor is only a join of some original inputs of subordinated processors that
did not fail in the first round. On the other hand, any ordinated processor re-
ceives, in the first round, the original inputs of at least all the subordinated
processors that did not fail in the first round. These inputs are joined to form
the ordinated processor’s input for the algorithm of its group. Since this algo-
rithm satisfies Validity(a), the final output of the ordinated processor dominates

46

the join of all the original inputs of subordinated processors that did not fail in
the first round. Thus, the final output of the ordinated processor dominates any
final output of a subordinated processor.

]

The number of levels is log n 4+ 1. Since each level takes exactly one commu-
nication round, the algorithm terminates afier logn + 1 rounds. The maximal
number of messages sent by a single processor is (n — 1).

5 Asynchronous Lattice Agreement

In this section we construct an asynchronous wait-free lattice agreement algo-
rithum, that is based on the ideas of the synchronous algorithm presented in the
previous section. The crux of the synchronous algorithm is creating two groups
of processors, subordinated and ordinated. The algorithm guarantees that any
ordinated processor “knows” the inputs of all the subordinated processors that
proceed to the next Jevel. Given this property, each group can recursively initiate
a lattice agreement algorithm of its own.

Implementing this idea in a synchronous environment is quite simple. The
division into groups is made a priori, and thus, each processor knows in ad-
vance to which groups it belongs at all levels. Implementing the same idea in an
asynchronous environment is not as straightforward. What we need is a synchro-
nization mechanism that (dynamically) classifies processors either as ordinated
or as subordinated, and guarantees that ordinated processors can access the
inputs of subordinated processors. We achieve this type of synchronization by
employing known constructions of software networks called counting networks
[7].

In general, a software network does not represent some physical connections
between nodes, but rather a virtual network that determines execution routes for
the various processors. In particular, counting networks, as presented in [7], are
software networks originaly used to implement distributed counters in an asyn-
chironous environment. A processor may ”execute” the network, and as a result,
the processor is provided with some integer number, These numbers induce a
certain counting process in the system. For our purposes, we employ a simple
instance of counting networks, called one-time counting networks. This type of
counting networks allow each processor to execute the network only once. In the
following section we give a brief description of one-time counting networks.

5.1 Oune-Time Counting Networks

A one-time counting network with fan-out n, is a software network with n input
wires, numbered 1,...,n, and n output wires, numbered 1,...,n.5 The network

8 For the rest of the paper, we assume that n is a power of 2. Otherwise, simple
padding techniques can be used. The impossibility results of [2] on the construction

of nelworks with arbitrary fan-out does not apply here, since we use our networks
only once.

47

is constructed from 2-processor TesifsSet registers as nodes, where each node
has two input wires and two output wires,

As was mentioned, each processor may execute the network only once. An
execution of the network by some processor, say P;, proceeds as follows: P; enters
the network on input wire i, and follows that wire until some node, (actually a
2-processor Tesi€Set register), is encountered. Then, P, tries to set the node.
If P; succeeds in setting the node, it follows the first output wire of the node,
and otherwise, it follows the second wire of the node. This is done whenever a
node is encountered, and eventually, P; exits the network on one of the n output
wires. (We consider networks that are both finite and acyclic, and thus, it is
guaranteed that Py will eventually exit the network.)

A one-time counting network must satisfy the following ” counting” property:
at most one processor exits the network on each output wire, and if a processor
exits the network on cutput wire j, then at least j — 1 processors have already
entered the network, and will exit on wires 1,...,5—1. Exploiting this property,
Wwe use one-time counting networks in order to classify ordinated and subordi-
nated processors. This is done in the following way: a processor writes its input
into some shared register, and then executes the network. Processors that exit
the network on wires j > 2 are classified as ordinated, and the others are classi-
fied as subordinated. By the counting property of the network, this classification
indeed guarantees ihat an ordinated processor can access the inputs of all the
subordinated processors. 7

There are known constructions of general counting networks that can be used
as one-time counting networks [7, 22]. However, as was proved in {7], any sorting
network can be used as a one-time counting network, Thus, the best construction
of a one-time counting network with fan-out n, is due to a sorting network
construction by {3]. In the following sections we refer to several properties of
this construction. These properties are listed below: '

1. The counting property: at most one processor exits the network on each
output wire, and when some processor exits the network on output wire j,
all the j — 1 processors that will exit on output wires k& < j have already
entered the network.

2. O(logn) depth: between entering and exiting the network, a processor tra-
verses O(logn) nodes.

3. Each node is accessed by at most two processors, however, the identity of

the two processors that access a certain node is a-priori unknown, and is
dependent on the execution.

8.2 Asynchronous Lattice Agreement: First Version

The properties of one-time counting networks enable us to transform the recur-
sive synchronous lattice agreement algorithm of Section 4 into an asynchronous
algorithm. As in the synchronous algorithm, n processors start in level 1 as a sin-
gle group of size n, and are recursively halved into ordinated and subordinated
groups. After (log n+1) levels, each processor is an individual group. For brevity,

48

we name the groups that are created by the algorithm. The single group in level
{ = 1 is denoted G. Inductively, for any group G, the groups of subordinated
and ordinated processors that are created from G., are denoted G., and G.,,
respectively. Throughout the description of the algorithm, we use |G, | to denote
the size of Gi. By the inductive construction of the groups, if G. is a group of
level £, then |G.| = .

The algorithm makes use of the following shared data structures: For each
level £, and for each group G, in this level, there is a set of |G.| single-writer
multi-reader atomic registers, Ry, ..., R|g,|, which are called the registers of G..
In addition, G, is associated with a one-time counting network with fan-out
|G. 1, which is called the one-time counting network of G..

In order to describe the algorithm, assume that P;, as a member of some

group G of level £, starts level £ with some input. The algorithm for P at level
£ is: .

Alpgorithia Asynchl:

1. P; writes its input into R; (of G.).

2. P executes the one-time counting network of G., and exits on some ontput
wire j, i1 <j < J%’-l, then P; belongs in level ¢ + 1 to the subordinated
group G.,, and otherwise, P; belongs to the ordinated group G,..

3. Next, P; decides on its input for the recursive algorithm of its group in level
£+ 1. 1f I is in G\,, then its input for the recursive algorithm is the same
as its input in level £, If P; is in G,,, then it reads the registers of G., and
joins all inputs it reads to form its input for the recursive algorithm,

4, If { = logn + 1, then P; returns its current input and terminates.
Otherwise, F; changes its identity, and adopts a new name, P(.i mod 128141
This name is actually P;’s index in its new group (G., or G.,), as it appears
from the order in which the processors of this new group exit the one-time

counting network of G.. Now, P; uses its new name and starts the recursive
algorithm within its group.

By the properties of one-time counting networks, and the construction of the
algorithin, we have the following;:

Lemma 9. Let Gy be a group of processors in some level £. Algorithm Asynchi
satisfies the following properties:

a. The inpul of a processor in G., (for the algorithm of level £+1) dominates
all the inpuls of processors in G,,.

b. The final oulput of any processor in G., is & join of some inputs of pro-
cessors in G,

Using Lemma 9, we can prove the following theorem along the lines of The-
orem 8.

Theorem 10, Algorithm Asynchi solves lattice agreement.

49

By straightforward calculations, we can prove the following:

Lemma 11. In the algorithm Asynchi, each processor executes O(log® n) oper-
ations on 2-processor Test&Sel registers, and O(n) operations on single-writer
maulti-rcader read/wrile registers,

5.3 Asyuchronous Lattice Agreement: Second Version .

- Unfortunately, in Algorithm Asynchl, processors are dynamically allocated to
registers. 'Thai is, the identity of processors that access a certain register is
not known a priori, and is determined dynamically during the execution, The
dynamic allocation occurs in two places: First, it is a priori unknown which two
processors will access a certain node (register) in the network. Second, in the
algorithm itself, since processors dynamically obtain new identities during the
algorithm, it is @ priori unknown which processor will write to each single-writer
read/write register in the registers of the various groups.

Algorithms that use dynamic allocation have several drawbacks. First, in
order to implement such an algorithm, one must physically design the system
in a way that enables each processor to access each of the shared registers. In
addition, it is harder to reuse the shared data objects of the algorithm.”

In this section, we present a version of Algorithm Asynchl that does not use
dynamic allocation. This version is slightly less efficient than Algorithm Asynchl.

We first modify the construction of one-time counting networks, and then
the algorithm itself. ‘

In order to construct a one-time counting network with no dynamic alloca-
tion, we replace the nodes of the network with a more complex data structure.
Each node is now a triangular “matrix” of (3) 2-processor TestéSet registers,
one for each pair of processors. In each node, each processor has access only to
its extended row, which contains n ~ 1 registers (one for each other processor).

An execution of the modified one-time counting network proceeds as before
with the following modification: When a processor arrives at a node, it tries to
set allregisters in its extended row in the matrix of this node. Only if it succeeds
in setting all of them, it follows the first output wire of that node. Otherwise, it
follows the second output wire of that node.

By the properties of the one-time counting network, each node is accessed by
at most two processors. Thus, it easy to see that the modified construction of one-
time counting networks maintains their original properties. In addition, there is
no dynamic allocation of processors to registers. Note that the complexity of the
modified coustruciion is worse. A processor that executes the modified one-time
counting network with fan-out n executes O(nlogn) operations on 2-processor
TestésSet registers.

The following asynchronous algorithm, Asynch2, shares the same recursive
construction of algorithm Asynchl. However, in order to prevent dynamic allo-
cation, it uses slightly different data structures. For each level £ there is a set

7 This is very important if we want to guarantee that algorithms use only bounded
_shared memory; we relurn to this issue in Section 6.

50

of registers Ry 1, ..., Ry n, which are the registers of level £. In addition, for each
group G, there is a one-time counting network with fan-out n (of the modified
type), that is called the one-time counting network of G.. Notice that, regardless
of the size of (7., a one-time counting network with fan-out n is used.

To describe the algorithm, assume that P;, as a member of some group G.,
starts level £ with some input, The algorithm for P; at level £ is:

Algorithm Asynch?2:

1. P; writes its input, and its group name G.,, into Ry ;.

2. P; executes the one-time counting network of group ., and exits on some
output wire 7. If 1 < j < l%i, then P; belongs to the subordinated group
Gas. Otherwise, F; belongs to the ordinated group G.,.

3. Next, P; decides on its input for the recursive algorithm of its group. If P;
is in G.,, then its input for the recursive algorithm is the same as in the
previous level. If F; is in G.,, then it reads the registers of level £, and joins
the inputs of registers that have G, as their group name, to form its input
{for the recursive algorithm.

4. F; executes the recursive algorithm within its group. If | is the last level, P;
returns its current input and terminates.

To prove correctness, we note that Algorithm Asynch?2 satisfies the properties
of Lemma 9. This implies the following:

Lemmal2. The algorithm Asynch? solves lattice agreement,

Lemma 13. In Algorithm Asynch2, each processor executes O(nlog? n) oper-
alions on 2-processor TestédSel registers and O(nlogn) operations on single-
writer mulli-reader read/wrile registers.

Proof. The algorithm has (logn + 1) levels. In each level, a processor executes a
one-time counting network with fan-out n of the modified type. Each execution of
such network, requires O(n logn) operations on 2-processor TestéfSet registers.
Thus, each processor executes O(nlog® n) operations on 2-processor Test&Set
registers. In addition, in each level a processor reads all n registers of that level,

and thus, each processor executes O(nlogn) operations on single-writer multi-
reader registers.
m}

6 Discussion

We have proved that any algorithm solving lattice agreement can be used to
implement a snapshot object. We presented a linear algorithm for solving lattice

agreement, and hence for implementing snapshot objects, This algorithm uses
2-processor Test€fSet registers,

51

This is a significant improvement in the number of operations required to
implement a snapshot object, but it is achieved using a shared memory prim-
itive which is stronger than read/write registers. Although Test&Set registers
are stronger than read/write registers, they are not very powerful, as they can
only be used to solve 2-processor consensus; they cannot be used to implement
powerful objects such as Compare&Swap [17]. Moreover, our algorithms have
low-contention since each register is accessed by at most two processors.

So far, all our snapshot algorithms use an unbounded amount of shared
memory. This is due to the fact that the transformation from lattice agreement to
snapshot objects relies on an unbounded number of rounds of lattice agreement.
We believe that in most cases, for a specific lattice agreement algorithm, these
unbounded rounds can be simulated by the bounded rounds construction of
[8]. The main difficulty in applying this idea is how to reuse the shared data
structures of the algorithm. In the full version of the paper, we show that when
using algorithm Asynch2 as the lattice agreement algorithm, the transformation
can be accomplished using only a bounded amount of shared mermory.

"The obvious question left open by our work is improving the bounds for im-
plementing snapshot objects. The results presented here suggest that it might be
helpful to concentrate on lattice agreement. If there is a non-linear lower bound,
then our linear synchronous algorithm implies that it must exploit asynchrony,
while our linear asynchronous algorithm using TestéSet registers implies that it
must exploit the weakness of read/write registers.

We have shown a strong relation between snapshot objects and lattice agree-
ment. It is interesting to show a similar relation between other decision problems
and concurrent objects.

In our opinion, the log n-rounds synchronous algorithm for lattice agreement
is interesting on its own right. Lattice agreement Jjoins other decision problems
that can be solved faster than consensus: renaming, which can be solved within
Oflogn) rounds [19], and k-set consensus which can be solved within o(%)
rounds [11]. This gives more evidence to the fine structure of the problems weaker
than consensus in the synchronous model.

Acknowledgemenis: We thank Tal Rabin and Asaf Shirazi, for helpful comrents
on an earlier version of this paper.

52

References

1.

10.

11.

12.

13,

14.

15.

16.

17.

18.

19.

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, “Atomic Snap-
shots of Shared Memory,” proceedings of the 9th Annual ACM Symposiuvm on
Principles of Distributed Computing, 1990, pp. 1-14.

. E. Aharonson and H. Attiya, “Counting Network with Arbitrary Fan-Out,” pro-

ceedings of the 8rd Annual ACM-SIAM Symp. on Discrete Algorithms, Orlando,
Florida, January 1992, pp. 104-113.

. M. Ajtai, J. Komlos and E. Szemeredi, “An O(n log n) sorting network,” proceed-

ings of the 15th ACM Symposium on the Theory of Computing, 1-9, 1983.

. J. H. Auderson, “Composite Registers,” proceedings of the 9th Annual ACM Sym-

posium on Principles of Distributed Computing, 1990, pp. 15-29.

. J. Aspnes, “Time- and Space-Efficient Randomized Consensus,” proceedings of

the 9th Annual ACM Symposium on Principles of Distributed Computing, 1990,
pp. 325-331.

. Jd. Aspnes and M. P, Herlihy, “Wait-Free Data Structures in the Asynchronous

PRAM Model,” proceedings of the 2nd Annual Symposium on Parallel Algorithms
and Architectures, 1990, pp. 340-349.

. 1. Aspnes, M. P. Herlihy and N. Shavit, “Counting Networks and Muiti-Processor

Coordination,” proceedings of the 23rd annual Symposium on Theory of Compul-
ing, 1991, pp. 348-358,

. H. Aitiya, D. Dolev and N. Shavit, “Bounded polynomial randomized consensus,”

proceedings of the 8th Annual ACM Symposium on Principles of Distributed Com-
puling, 1989, pp. 281293,

. H. Attiya, N. A, Lynch and N. Shavit, “Are wait-free algorithms fast?” proceed-

ings of the S1st IEEE Symposium on on Foundations of Computer Science 1990,
pp. 55-64.

‘I'. Chandra and C. Dwork, personal communication.

8. Chaudhuri, “Towards a Complexity Hierarchy of Wait-Free Concurrent Ob-
Jects,” proceeding of the 3rd IEEE Symposium on Parallel and Distributed Pro-
cessing, 1991, pp. 730-737.

B. Chor and L. Moscovici, “Solvability in Asynchronous Environments,” proceed-
ings of the 30th IEEE Symposium on on Foundations of Computer Science 1989,
pPp. 422-427,

B, Chor and L. Nelson, proceedings of the 10th ACM Symp. on Principles of Dis-
tributed Computing, 1991, pp. 37-49,

C. Dwork, personal communication,

C. Dwork, M. P. Herlihy, S. A. Plotkin, and O. Waarts, “Time-Lapse Snapshots,”
proceedings of Israel Symposium on the Theory of Computing and Systems, 1992,
to appear.

R. Gawlick, N. Lynch and N, Shavit, “Concurrent Timestamping Made Simple,”
proceedings of Israel Symposium on the Theory of Computing and Systems, 1992,
to appear,

Herlihy, M. P. “Waii-free synchronization,” ACM Transactions on Programming
Languages and Systems, Vol. 13, No. 1 (Jan. 1991), pp. 124-149.

M. P. Herlihy, “Randomized Wait-Free Objecis,” proceedings of the 10th ACM
Symp. on Principles of Distributed Computing, 1991, pp. 11-21.

M. Herlihy and M. Tutile, “Wait-Free Computation in Message-Passing Systems,”

proceedings of the 9th ACM Symp. on Principles of Distributed Computing, 1990,
Pp. 347-362,

20,

21.

22.

23.

53

M. P. Herlihy and J. M, Wing, “Linearizability: A correctness condition for con-
current objects,” ACM Transactions on Programming Languages and Systems,
Vol. 12, No. 3 (July 1990}, pp. 463-492.

L. M. Kirousis, P. Spirakis and Ph. Tsigas, “Reading Many Variables in One
Atomic Operation: Solutions with Linear or Sublinear Complexity,” proceedings of
the 5th International Workshop on Distributed Algorithms, Delphi, Greece, Octo-
ber 1991 (S. Toueg, P. Spirakis and L. Kirousis, eds.), pp. 229-241, Lecture Notes
in Computer Science #579, Springer-Verlag.

M. Klugerman and G. Plaxton, “Small-Depth Counting Networks,” Proceedings of
the 24th ACM Symp. on Theory of Computing, 1992, pp. 417-428.

J. Tromp and P, M. B. Vitanyi, “Randomized Wait-Free Test-and-Set,”
manuscript, November 1990.

Choice Coordination with Multiple Alternatives
(Preliminary Version)

David S. Greenberg®, Gadi Taubenfeld?, and Da-Wei Wang?®

! Sandia National Labs, P.O. Box 5800, Albuquerque, NM 87185
2 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
% Yale University, New Haven, C'T' 06520

Abstract. The Choice Coordination Problem with & alternatives (k-
CCP) was introduced by Rabin in 1982 [Rab82]. The goal is to design a
wait-free protocol for n asynchronous procesges which causes all correct
processes to agree on one out of & possible alternatives. The agreement
on a single choice is complicated by the fact that there is no a priori
agreement on names for the alternatives. Furthermore processes must
state their choice and do all communication via registers associated with
the alternatives. We exactly characterize when the £-CCP can be solved
deterministicily, prove upper and lower space bounds for deterministic
solutions, and provide a randomized protocol which is significantly better
than the deterministic lower bound.

1 Introduction

1.1 The Choice Coordination Problem

A central igsue in distributed computing is how to coordinate the actions of
agynchronous processes. Coordination becomes even more difficult if as many
as n — 1 of the n processes can fail. The Choice Coordination Problem (CCP)
[Rab82] highlights many of the difficulties inherent in such wasi-free situations.
Solutions to the CCP thus lend insight into how to coordinate asynchronous
actions.

In the k-CCP, n asynchronous processes must choose between & alternatives.
Each process has its own naming convention for the alternatives. A solution
to the k-CCP is a protocol which guarantees that all correct processes termi-
nate having chosen the same alternative. A slightly more concrete version of
the k-CCP associates a shared register with each alternative. All inter-process
communication must be accomplished by writing in these registers. However, the
registers do not have global names; the first register examined and the subse-
quent order in which registers are scanned may be different for each process. A
special symbol must be written in exactly one register and all correct processes
must terminate pointing to this register. The efficiency of the protocol is defined
by the number of different symbols which may be written in the registers.

It seemed intuitively obvious that adding more alternatives and hence more
registers would just msake the coordination more difficult. One of our results

55

is that, surprisingly, having more alternatives can lead to requiring fewer sym-
bols. Besides giving protocols which take advantage of additional registers we
exactly characterize the values of k and n for which the k&-CCP can be solved
by n deterministic processes, prove lower bounds on the number of symbols re-
quired by deterministic protocols, and provide randomized protocols which are
significantly better than the deterministic lower bounds.

1.2 Computational Model

Our model of computation consists of a fully asynchronous collection of n pro-
cesses. It is assumed that each process has an identifier but the identifiers need
not be unique. Processes may fail only by crashing; that is, they fail only by
never entering the protocol or by leaving the protocol at some point and there-
after permanently refraining from writing the shared registers. We require that
all protocols be wait-free. That is, they can tolerate up to n — 1 process failures.

All inter-process communications are via finite sized shared registers which
are initially in a known state. Access to the shared registers is via atomic “read-
modify-write” instructions which, in a single indivisible step, read the value in
a register and then write a new value that can depend on the value just read.
In the k-CCP each of the k alternatives has an associated register shared by
all processes. The registers do not have global names; a single register may be
considered the fifth register by one process and the eighth by another. Even the
order of the names may be different. Thus one process may scan four alternatives
in order 3, 2, 1, 4 while another scans 2, 4, 1, 3.

The lack of global names for the registers makes it is convenient to think of
each process as being assigned an initial register and an ordering of the registers
which determines how it scans the registers. An interesting special case is when
all the erderings coincide. If all processes are agsigned the same ordering (though
potentially different initial registers) we say that the alternatives are arranged as
a unidirectional ring. If all processes are assigned either one particular ordering
or its inverse then the alternatives are said to be arranged as a bidirectional
ring. Although in the bidirectional ring case the protocol can use the fact that
all processes use a single ordering or its inverse there is no ¢ priori agreement
on which is the ordering and which the inverse.

Given the above definitions we now can formally define a solution to the
k-CCP. A protocol is a solution to the general -CCP if, for all possible order-
ings and initial registers assigned to the asynchronous processes, eventually the
special symbol, e, is written in exactly one register and all correct processes ter-
minate with a pointer to the register containing the e. A protocol is a solution to
the unidirectional (bidirectional) k-CCP if the protocol solves the k-CCP when
all processes are assigned the same ordering (or its inverse). Protocols requiring
the least number of values in the shared registers are considered optimal. Other
papers [BBD89] also measure internal memory size of the processes but we will
not address this measure here,

56

1.3 Related Work

There are only two published papers about the k-CCP problem. Rabin’s paper
which introduced the problem [Rab82], and a paper by Bar-Noy, Ben-or and
Dolev [BBD89]. Rabin is mainly interested in the caseof k =2 and t =n - 1. (k
is the number of alternatives and £ is the possible number of faulty processes.) He
shows a deterministic protocol using m = n +2 symbols (for each register) and a
lower bound of m > (r/8)!/3 for deterministic protocols. The upper bound can
be modified to hold for any k. Also, as mentioned in [BBD89], the lower bound
can be immediately extended to any ¢, obtaining m = 2(!/). Rabin contrasts
these deterministic results with a randomized protocol which, for m symbols,
terminates correctly with probability 1 —1 Jami2,

Bar-noy, Ben-or and Dolev extend Rabin’s analysis to arbitrary ¢, exam-
ine the local storage requirements, and study a semi-synchronous model. They
present deterministic and randomized protocols which both use O(t?) symbols.
The randomized solution, which is for identical processes, terminates with prob-
ability 1 and is always correctly. The deterministic solution requires O(2™logt)
bits of internal memory. Another deterministic solution which requires only
Oflogn) bits of internal memory but O(#* logn) symbols is given. For k = 3
they showed that n/2 + 3 symbols is sufficient for a deterministic wait-free so-
lution, and that for every prime k only n/(k — 1) + 3 symbols are needed under
the assumption that the registers are arranged as a unidirectional ring.

"The k-CCP is related to the classic consensus problem[Fis83]. When all pro-
cesses use the same set of names for the alternatives and the first register ex-
amined by a process in the k-CCP corresponds to the process’ input in the
consensus problem then a solution to the k-CCP is similar to a solution to con-
sensus. However, in the consensus problem there is the additional requirement
that the chosen alternative be the input of some process.

Impossibility results about the well-studied consensus problem therefore lend
insight into the k-CCP. For example, Fischer, Lynch, and Paterson show that no
consensus protocol can tolerate even a single crash failure in an agynchronous
message-passing model [FLP85]. A similar result also holds for a shared memory
model which supports only atomic read and write operations [LA87]. This last
result can be used to show that: the k-CCP is not solvable in the presence of
even a single crash failure if only atomic read and write operations are assumed.
The Loui and Abu-Amara impossibility proof does not use the requirement that
the chosen alternative be the input of some process but instead uses the weaker
requirement that there are two runs in which different alternatives are chosen.
Since it is easy to ensure that the k-CCP meets this weaker condition the im-
possibility for k~-CCP follows.

1.4 Summary of Results

As mentioned, most of existing results examine only two alternatives (i.e., k = 2),
and assume unique identifiers for deterministic protocols. We solve the problem
for any number of alternatives, and also study the case where processes do not
have unique identifiers. The two main questions that we try to answer are:

57

1. Assuming that there is no limitation on the size of each register, under what
circumstances is the k-CCP solvable?

2. How many symbols for each of the k registers are necessary and sufficient to
solve the k-CCP, as a function of k and n?

The answers to both these questions give a measure of the communication-
space complexity of the problem and also provide a way of assessing the cost of
achieving reliability. We give a brief overview of our results below.
SOLVABILITY CONDITIONS FOR THE k-CCP: Assuming that there is no lim-
itation on the size of each register, we show that the k-CCP is solvable by a
deterministic protocol if and only if the maximal number of processes having
the same identifier is smaller than the least prime divisor of k. In proving this
result, no assumption is made about the arrangement of the registers,
DETERMINISTIC SOLUTIONS — UPPER BOUND: When the registers are arranged
on a ring we give a protocol which makes use of additional alternatives' registers
to reduce the number of symbols required. For n processes and & alternatives
(i.e., registers) our protocols use O(n n(k)/k + n(k)) symbols, where p(k) is the
number of prime factors of k& counting duplicates as separate. Furthermore, we
give a simple protocol which for k¥ > n? uses at most 6 symbols.
DETERMINISTIC SOLUTIONS ~ LOWER BOUND: When the registers are arranged
in a ring we show that all correct protocols must use at least {/n/k? symbols.
When no assumption is made about the arrangement of the registers, we tighten
the bound to m > {/n/4k.

RANDOMIZED SOLUTIONS: We pregent a randomized protocol that solves the k-
CCP, and terminates with probability greater than 1 — 2—(m—logk=2loglog k~3)/2,
where m is the number of symbols used by a protocol. Thus, if k < 2100 5
probability of success greater than 1 —271% can be achieved for any number of
processes using registers which are just 9 bits wide, In this protocol the processes
are identical (i.e., have the same identifier) and no assumption is made about
the arrangement of the registers,

2 Solvability Conditions for the k-CCP

A first question concerning the k-CCP is: Under what circumstances is the k-
CCP solvable deterministically? In this section we show that the k-CCP is solv-
able if and only if the maximum number of processes having the same identifier
is smaller than the least prime divisor of k. It is assumed that there is no limi-
tation on the size of each register. In later sections the relation of register size
to number of processes for which the k-CCP is solvable will be investigated.

More precisely, assume each process has an identifier but that the identifiers
need not be unique. Let A be the maximum number of processes with the same
identifier. Notice that when the processes are identical N = n, and when they
have unique identifiers A’ = 1. Now recall that k is the number of registers and
define £(k) to be the least divisor of k which is greater than 1. The theorem
below, gives a complete characterization for the solvable cases. (Notice that no
assumption is made about the arrangement of the registers.)

58

Theorem 1. For any k, n, and N, there exists a deterministic protocol for n
processes which solves the k-CCP if and only if N < &(k).

Proof. We first assume that A" > £(k), and prove that no solution exists. Pick a
cyclic ordering of the k registers and divide it into £(k) segments each containing
exactly k/£(k) registers. Pick £(k) processes with the same identifier and assign
one to the first register in each of the £(k) segments. Now, schedule these and only
these processes in a round robin fashion; each process, in turn, moves to the next
register in the ordering and executes one read-modify-write operation. Because
the processes are placed symmetrically, each operation of the first scheduled
process is always followed by the same cperation, on a different register, by each
other process. Thus the original symmetry is restored after each round of the
round robin. Therefore, if one process writes e into some register then at the end
of the round each of these processes will write e in a different register.

Next, we agssume that A < £(k), and show how to solve the k-CCP on a
general graph. For simplicity we will start by assuming that » = A, that is all
processes have the same identifier. The general case of several different identifiers
each associated with at most A processes is discussed at the end of the proof.
The protocol for all processes having the same identifier is given in Figure 1.

In the protocol the constructs lock and unlock mark the beginning and end
of atomic, exclusive access to the shared register at which pointer p is pointing,
Each process can lock only one register at a time. The fact that the read-modify-
write operation is wait-free and atomic is reflected by the assumption that a
process does not fail between executing lock and the next unlock, and that any
non-faulty process that reaches a lock instruction eventually executes it.

The goal of Procedure A ig to break the symmetry of the processes. The
full protocol logically divides the registers into n tracks and uses Procedure A
repeatedly on different tracks in order to give each process a unique value. The
unique values can then be used in a last track to identify a unique decision
register. '

In this abstract we only state without proof the main lemmas required by
the proof of the theorem.

Lemmal. All processes scheduled k times in during o call to Procedure A ter-
minate. Not all processes using Procedure A on the same track halt with the same
velue of c.

An execution of Procedure A partitions the processes into groups depending on
their final value of ¢. Although no process can know any other process’ group
number each can determine from the final configuration how many processes are
in each possible group. The number of processes in group 4 > 0 (i.e., the number
of processes where ¢ = 4) is simply the number of shared registers containing
the value ¢ minus the number of registers containing ¢ + 1. Let f(¢) be the total
number of processes in groups greater than ¢ and A(?) be the number of processes
in group 7 (let f(—1) =n).

59

shared C" ring of k registers range over n-tuples of integers;:
local S: array [1..k] of n-tuples of integers;

local i: integer {1...k}; % pointer into §

local ¢: integer {0...k}; % counter

local ¢: integer {1...n}; % track

local r: integer {1..n}; % minimum Tank

local p: pointer which initially points to some arbitrary register of C;
t:=1;r:=1;

Repeat

Execute Procedure A on track ¢ returning ¢ and S

if fc)=0thent=1t+1elset:=t+ f(c);

ri=r+ f(c);
Until Me) = 1
Write r on track n of any one register containing L if any exists;
Write 0 on track n of all registers containing .. if any exists;
Write e on the register containing the maximum value in track n
end-protocol

% Using only track ¢ of § divide processes into at least two groups
% Input: S,p,t, Output: S,p,c
Procedure A

c:= 0

% Write in {th track of as many registers as possible

For i from 1 to k do

lock
if pT= L then {c:=c+1 ; pl:=c}; % change track ¢ of pl only
Si] = pf;
unlock
move p to the next register;
end-for

end-procedure

lFig. 1. Solution to the k-CCP when all processes have the same id.

Procedure A breaks some of the initial symmetry, producing at least two non-
empty groups. The full protocol applies Procedure A recursively to each group
of processes until each process is in a group of its own at which point it can be
assigned a unique identifier.

If each instantiation of Procedure A used the same registers then they might
interfere badly. It is not possible to agree a priori on a partition of the registers
in order to avoid interference. Instead each register is logically divided into n
tracks; ie. the values in the registers can be thought of as n-tuples of track values.
The full protocol arranges that all processes participating in a given instantiation
of Procedure A use the unique track reserved for this instantiation. Since each
instantiation uses its own track Lemma 1 will hold for all instantiations.

60

Lemma 2. Each correct process eventually erits the main loop of the protocol
in Figure 1 with o unique value of r.

The proof of Theorem 1 follows easily from Lemmas 2. The termination of the
entire protocol is clear since the main loop terminates. The correctness follows
from the fact that each process exits the main loop with a unique value of »
(1 < r < n). In track » each process then writes its value at most once and at
least one process writes its value. Thus there must be a unique maximum value
in track » when it no longer containg any non-bottom symbols. Hence the value
e is written exactly one.

We started the proof by assuming that n = A, that is all processes have
the same identifier. When there are several identifier values, each assigned to
fewer than £(k) processes then separate tracks must be assigned a priori for
each potential identifier value. _

An immediate consequence of Theorem 1 is that for any & and =, there exists
a solution to the k-CCP, when the n processes have unique identifiers; and when
k is even there is a solution only if the processes have unique identifiers.

A quick calculation shows that the protocol of Figure 1 requires a total of
(n + 2)(k + 1)"! symbols. There are several ways of saving symbols. Perhaps
the easiest is to have processes not increment their counter above k/2 + 1 since
this value must be unique. However the best solutions still use (k/c)® sym-
bols for some constant ¢. When the registers are constrained to be visited as
& unidirectional or bidirectional ring the number of symbols can be reduced to
[(#id - N)/(€(k) — 1)] + 3, where #4d is the number of different identifiers.

3 Upper Bounds

In this section we examine the k-CCP when each process has its own unique
identifier and the alternatives are arranged as a unidirectional ring. We present
a protocol which, for a fixed n, reduces the number of symbols required as &
increases. No more than O((nlog k)/k + log k) symbols are ever used by the pro-
tocol. When k has few factors then even fewer symbols are needed. In addition,
when k£ > n? at most 6 symbols are used.

We write k’s prime factorization as k = []p;* (where V%, p; is prime and
Vi # 4, pi # p;.) Let 5(k) = 3, e;; thus n{k) is the number of prime factors of k,
counting duplicates as separate. Note that if k is a power of 2 then (k) = log, k,
and that log, & is the maximum possible value of 9(k).

Theorem 2. The k-CCP can be solved by n processes having unique identifiers
on a unidirectional ring using m symbols if

1. m > [n/(k = V)] +8n(k) + [20/(k - 2)](n(k) = 1), or
2. k>n®and m > 6.

In this abstract we give only a sketch of the proof of Part 1 of Theorem 2. The
complete protocol on which the proof is based is given in Figure 2. The efficiency

61

of the protocol could be increased in geveral ways which would, however, made
the proof less transparent. For example, it is not necesary to check if ¢ < 5(k) in
the guard of the main while loop and a process can often skip ahead to a later
phase once it has determined that it has fallen behind.

Let S be the sequence sp,...,3-1. The ith rotation (0 < i < k) of S is
the sequence R;(5) = s;,..., 8%, 81, ..., 8i—1. A lezicographically mazimal rotation
(abbv. lmr) of § is any rotation R;(S) such that for all 0 < i < k, R;(S) > Ry(S5)
according to the standard lexicographic order.

Lemma 3. If a sequence of length k has L Imrs then L divides k and each symbol
occurs a multiple of L times,

Recall that £(k) is the least divisor of k which is greater than 1 (when k ig prime
(k) = k). It follows from Lemma 3 that in a sequence of length k where some
symbol occurs fewer than £(k) times, there is a unique lmr. Furthermore, in a
sequence of length ¥ where some symbol occurs a number of times relatively
prime to k, there is a unique lmr.

Ideas Behind the Protocol

We are now ready for an intuitive description of the protocol. Initially the k
registers all contain the same known initial symbol and thus there are k Imirs. The
protocol proceeds in phases; each phase reduces the number of lrars. Lemma 3
shows that the number of lmrs is always a divisor of &, thus the number of lmrs
must actually decrease in each phase by a multiple of prime factors of k. Even
if each phase divides the number of lmrs by only a single prime factor of k then
after (k) phases the number of lmrs would have to be reduced to one. Once a
single lmr is achieved the processes choose the register at the start of the single
Imr.

A different set of symbols is used in each phase. This allows processes which
have been delayed to quickly determine the correct phase. In particular it pre-
vents processes last scheduled in an earlier phase from interfering with a later
phase. The protocol is nonetheless efficient because there are not many phases
and relatively few symbols are used in each phasge.

During each phase the processes must use these limited number of symbols
to reduce the number of Imrs. In order to ensure that only a single lmr remains
would require ensuring that some symbol occurs fewer than £(k) times. Fortu-
nately we need only to reduce the number of Imrs in each phase. In the first
phase we only need to guarantee that some symbol occurs less than k times.
Consequently, the first phase uses only [n/(k — 1)] + 2 symbols.

It might seem that as the number of lmrs decreases, more symbols will be
needed to further reduce the number of lmrs. For example, if every symbol must
occur less often than the number of lmrs and the number of Imrs is 2 then n
gymbols are necessary. The protocol avoids this growth of number of symbols by
taking advantage of symbol placement around the ring of registers.

62

shared C': ring of k registers range over pairs of integers, initially all = (1, =1);
local S: array [1..k] of pairs of integers;

local ¢, j, val, pos, lmrs, bl, index: integer;

local p: pointer which initially points on some arbitary register of C;

boolean writeactive: flag specifying whether active symbol needs to be written;
constant marker = oo; mfill = —1; afill = 0; e = (0o, 20);

1= 1; val = [idy /(k — 1)]; bmrs := k; writeactive :== true;

while (Imrs # 1) and (£ < 5(k)) do
% Ensure that an active symbol is written in this phase
lock if writeactive and (p= (i, mfill)) then pl:= (i, val) unlock;

% Loop A: Ensure completion of active phase by writing fill symbols
for j from 1 to & do

move p to the next register;

lock if pT= (¢, mfill) then pl:= (i,afill) unlock ;

Sl4] := p? end-for

% If S holds only phase i symbols then
% found an active configuration and must write a marker symbol
if V3, S{jl < (i +1,-1) then

indez := index in S of the beginning of an lmr;

move p forward index times;

lock if p7< (i + 1, —1) then pt:= (i + 1, marker) unlock;

% Loop B: Ensure completion of marker phase by writing £ill symbols
for § from 1 to k do

move p to the next register;

lock if pT< (i + 1, —1) then pT:= (i + 1, mfill) unlock;

S[4] := pl end-for

% S holds a copy of C, possibly the phase i+ 1 marker configuration
% Prepare to write active symbol in next phase if necessary
i:= i+ 1; writeactive := false;
if V3, Slj] = (¢, marker) or S[j] = (¢, mfill) then
Imrs := the number lmrs of S
if Imrs =1 then pos :=0;
else { bl := k/lmrs; pos := 1 + idp, mod (Imrs - 1);
val = [idy/((Imrs — 1)(bl — 1})]; writeactive := true} ;
index := index in S of the beginning of an lmr;
move p forward index + pos times;
end-while
lock pl:= e unlock.

This protocol has several non-optimal features which were included in order to simplify]
the proof.

lFig. 2. Solution to the k-CCP — program for process p (with identifier idy).

63

A sequence containing L Imrs can be divided into L equal blocks of b = k/L
registers such that the cyclic sequence beginning at the start of each block is an
Imr. Instead of a phase ensuring that some symbol occurs fewer than L times it
ensures that not all blocks are the same. Since all blocks will not be the same,
not all blocks can still begin lmrs and the number of lmrs is reduced.

One detail omitted in the previous paragraph is that we need to guarantee
that lmrs begin only at registers which are the beginning of Imrs of the previous
phase. Thus we add a special marking subphase at the beginning of each phase.
The marking subphase marks, with the largest symbol possible for the phase,
some of the registers at the beginnings of Imrs in the previous phase; thus only
these marked registers can be at the start of Imrs in the new phase.

It is also possible to show that at most logr/nk symbols are needed, when
k > 7. In this case, in each phase the number of lmrs must decrease by a factor
of n/k and thus the number of phases is at most log;, /n k. In addition each phase
requires at most one active symbol.

Part 2 of Theorem 2 depends on a very simple protocol. The remainder of
this section contains a description of the protocol along with intuitive reasons
why it works.

The six symbols are denoted L,a,£ill-a,b, £il11-b,and e. Initially all reg-
isters contain L. Each process then writes o in its first register if the register
still contains 1 and writes £i11-a in every other register which still contains L.
Having done a Read-modify-write on each register once it now has a record of
all registers in which @ will ever be written.

Since k > n® and at most n registers contain an a (each process writes a at
most once) there must be at least one register containing a followed by n registers
containing £ill-a. Process ¢ moves to the ith register containing fill-a in such
a gap and writes b if the register still containg £i11-a. Thereafter it writes £i111-b
on every register still containing £i11-a, Now, having performed a Read-modify-
write on each register twice the process has a record of the final contents of all
the registers before e is written.

There is a unique b which is furthest from its preceeding a (and hence an
unique Imr). Since the identity of b is determined by relative distance from its
preceeding g all processes agree on its identity despite there different names for
the registers. Thus each can write e in the register containing this special b.

4 A Lower Bound.

In this section, we establish a lower bound on the number of symbols required to
solve the k-CCP. Our bound generalizes Rabin’s lower bound for & = 2 to apply
to general k. We examine both the case where it is known that the registers
are arranged as a ring and the case where nothing is known about the registers’
arrangement.

64

Theorem 3. Let P be a protocol for n processes that solves the k-CCP. Let m
be the number of symbols used by P. Then,

1. m > {/n/k3, assuming the registers are arranged as a uridirectional ring;

2. m > ¥/n/{dklogk), when no assumption is made about the arrangement of
the registers.

The proof relies on two key properties of the protocols. The wait-free property
ensures that any process run sufficiently long will eventually write a new symbol
until it finally writes e. The “anonymity” of the registers ensures that if all reg-
isters contain the same symbol then a process will take the same steps regardless
of its initial register and, in the general case, regardliess of the order in which
the registers are visited.

Informally, the proof employs an adversary which progressively extends a run
to lead from one configuration in which all registers contain the same symbol
to another such configuration. Each configuration uses a symbol not used in the
previous configurations. Eventually a configuration is reached with two registers
containing e. The wait-free property allows the adversary to find processes which,
when added to the run, will write new symbols and the anonymity property
allows it to force these processes to write the symbol in every register.

In order to extend the run to the next configuration the adversary needs
many processes which have not yet been used in the run. Protocols using more
symbols require the adversary to go through more intermediate configurations
before reaching one containing two e’s. Thus if more symbols are used than
more processes can be allowed to participate without including enough for the
adversary to force the protocol to fail.

The details of the adversary, which is & modified version of the one used
by Rabin{Rab82], are omitted from this abstract. In order to achieve bounds
when k > 2 we needed new combinatorial lemmas which bound the cost to the
adversary of forcing processes to write in particular registers.

5 Randomized Protocol

We have seen that for large values of k, compared to n, the number of symbols
used by a deterministic protocol in the ring case can be kept relatively small.
Our lower bounds show, however, that the number of symbols must grow as a
function of n. It is natural to ask if the number of symbols can be reduced if
a small probability of non-termination is allowed. In his seminal paper Rabin
showed that randomization could reduce the number of symbols when k = 2.
In this section we show that, for any value of k, randomization can reduce the
number of symbols needed.

Our strategy for randomized protocols draws many ideas from our determin-
istic protocols. Randomization allows us to simultaneously reduce the number
of symbols required, dispense with process identifiers, and succeed regardless of
whether or not the registers are arranged in a ring. For example, if ¥ < 2'%° then

€5

a probability of success greater than 1 — 2719 ¢an be achieved for any number
of identical processes using registers which are just 9 bits wide.

Theorem 4. For any k,n, and security perameter g, there exists a randomized
protocol for n processes using m = 2¢ + logmin{k,n} + 2loglog min{k,n} + 3
symbols which solves the k-CCP for n processes and terminates with probability
greater than 1 — 279,

The proof of Theorem 4 is based on the analysis of the protocol given in Figure
3. This protocol was designed to make the analysis of the worst case simple.
There are many obvious optimizations which improve its behavior on fortuitous
runs. Before analysing the protocol we give an informal description of it and an
intuitive idea of why it works.

The Protocol

The randomized protocol, like the deterministic one, works in phases. Each phase
uses some new symbols in an attempt to reduce the number of registers which
may end up containing e. If in a predetermined number of phases the number
of live registers (ones in which e may eventually be written) is reduced to one
then the protocol succeeds. The use of more symbols per phase or more phases
will increase the probability of success. Thus given a bound on allowable failure
probability we can ask what is the smallest number of symbols which can attain
this failure probability.

More specifically, in each phase each process picks a register which survived
the previous phase (we call these registers 4ve), writes in this register a random
symbol from those symbols assigned this phase, and then attempts to write the
kill symhol in all registers containing symbols from earlier phases. Intuitively, it
has ensured that at least one register survives the phase and then tried to kill all
other registers. As in the deterministic protocol we use a lock construct to denote
the read-modify-write. Inside the lock the process may generate a random value,
The choice being made inside the lock is meant to denote that we assume that
the gcheduling of the read-modify-write cannot depend on the choice of random
value.

A phase completes when all registers contain symbols from the same phase
or the kill symbol. All registers containing the maximum-value, least-frequently-
occurring symbol are considered to have survived the phase. If only one register
survives (recall that at least one must survive) then the protocol has completed
successfully and this register is chogen. Otherwise, if more phases remain the
next phase is begun. If this was the last phase then the protocol fails.

As in the deterministic protocols, care must be taken to make sure that all
processes, no matter how long they are delayed, make consistent decisions. In
particular any processes deciding to go to the next phase must agree on which
registers survived the previous phase.

The simplest version of the protocol uses two symbols at each phase. By
bounding the number of phases required to, with high probability, successively

66

shared C: ring of & registers range over pairs of integers, initially (0, 0);
local S: array [1..k] of pairs of integers;

local ¢: integer {1...k}; % pointer into §

local phase: integer; % # of phases

local number: array[0..1] of {0...k}; % number of live registers
local live: boolean; % value of the live register

local p: pointer which initially points on some arbitary register of C;
constant H = g + log min{k, n} -+ loglog min{k, n}; kill = (-1, ~1);
function RANDOM,; % Returns 0 Or 1 at random

phage 1= 1; number[0] = k; live = 0;
while number|live] # 1 and phase < H do
% Try to write new value on a live register
lock
if pt= (phase — 1, live) then pl:= (phase, RANDOM);
(phase, live) := pT; % Note that both phase and live are set here.
unlock
S[1] := (phase, live); move p to the next register; ¢ := 2;

% Look for a post-phase configuration
while (p1# e) and (i # 1) do
lock
if pT< (phase, —1) then pl:= kill
elseif p1> (phase + 1,0) then i :=1;
(phase, live) 1= pt;
unlock
S[4] := (phase, live); move p to the next register;
ifi=ktheni:=1elsei:=i+1;
end-while

% Compute the number and value of the live registers
number(0] = 0; number[l] = 0;
for i=1to k do
if S[i] = (phase,0) then number|0] := number([0] + 1
elseif S{i] = (phase, 1) then number(l] := number[l] + 1
end-for
if number(l] > number[0] then live =1 else live = 0;

% Move to a register which contained live when S was read
while 5[] # (phase, live) do
move p to the next register;
ifi=ktheni:=1lelsei:=1+1;

end-while
phase = phase + 1;
end-while

lock if number[live] = 1 then pf:= e unlock.

[Fig. 3. Randomized Solution to the k-CCP.

67

halve the number of surviving registers the upper bound on number of symbols
required for the entire protocol given in Theorem 4 is achieved.

The protocol can be fine-tuned by varying the number of symbols used by
each phase. For example, in the k = 2 case studied by Rabin, the protocol in
which processes randomly choose, at each phage, between three symbols to write
yields a probability of termination which is slightly greater then the probability
in Rabin’s protocol. If the registers are known to be arranged on a ring the ideas
from Section 3 can increase the termination probability even more.

Using a recent result of Karp[K91] it is possible improve our analysis to show
that fewer phases and thus fewer symbols achieves the same success probability.
Karp's result on probabilistic recurrence equations shows that g + logmin{k,n}
phases suffice.

6 Conclusions and Open Questions

We have examined the k-CCP under varying assumptions about the structure of
the alternatives and about the relative values of the number of alternatives and
the number of processes. Qur results generalize and extend most of the previously
known results to the case where more than two alternatives are available. A
major surprige of these extensions is that when more alternatives {(and hence
more registers) are added the complexity of the problem does not necessarily
increase. In fact, in certain cases more alternatives means that fewer symbols
are used for each register.

Several variants of the k-CCP remain as interesting open questions. Qur
deterministic protocols are correct even if the initial states of the registers are
not known. However, the size of the registers is no longer bounded; can this
be improved? When the atomic operations are just reads and writes (rather
than read-modify-write) then the presence of even a single crash failure implies
that there is no solution to k-CCP. What is the effect of using an intermediate
strength operations such as test-and-set?! It is not difficult to extend our wait-
free protocols to create protocols which tolerate up to ¢+ < n — 1 failures with
costs which decrease as t decreases.

Acknowledgements

The authors would like to thank Sandeep Bhatt, Mike Fischer, Michael Merritt,
Nick Reingold, Jeff Westbrook, and Lenore Zuck for helpful discussions.

This work was supported in part by NSF/DARPA grant CCR-8908285, NSF
grants CCR-8807426, CCR-8910289, and IRI-9015570, AFOSR, grant 89-0382,
ONR contract N00014-89-J-1980, DOE contract DE-AC04-76DP00789, a He-
brew Technical Institute scholarship, and an IBM Graduate Fellowship.

! In the test-and-set operation the read together with the write is atomic but the the
value written cannot depend on the value read.

68

References

[BBDS9] A. Bar-Noy, M, Ben-Or, and D. Dolev. Choice coordination with limited

[Fis83]

[FLP85)

[K91)

[LAS7)

[Rab82]

failure. Distributed Computing, 3:61-72, 1989,

M. J. Fischer., The congensus problem in unreliable distributed systems (a
brief survey). In M. Karpinsky, editor, Foundations of Computation Theory,
pages 127-140. Lecture Notes in Computer Science, vol. 158, Springer-Verlag,
1983.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, April
1985.

R. M. Karp. Probabilistic Recurrence Relations. In Proc. 29rd ACM Symp.
on Theory of Computing, pages 190-197, 1991.

C. M. Loui and H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, 4:163~
183, 1987.

M. O. Rabin. The choice coordination problem. Acta Informatica, 17:121-
134, 1982,

Some Results on the Impossibility, Universality,
and Decidability of Consensus*

Prasad Jayanti and Sam Toueg

Department of Computer Science, Cornell University, Ithaca, New York 14853, USA

1 Introduction

1.1 Background

A concurrent system consists of processes communicating via shared objects. Ex-
amples of shared object types include data structures such as register, quene,
and tree, and synchronization primitives such as test&set, and compare&swap.
Even though different processes may concurrently access a shared object, the ob-
ject must behave as if all these accesses occur in some sequential order. More
precisely, the behavior of a shared object must be linearizable [9]. One way to
ensure linearizability is to implement shared objects using critical sections {5].
This approach, however, is not fault-tolerant: The crash of a process while in
the critical section of a shared object can permanently prevent the rest of the
processes from accessing that object. This lack of fault-tolerance led to the con-
cept of wail-free implementations of shared objects [11, 16, 7]. Informally, an
implementation of a shared object is wait-free if every process can complete ev-
ery operation on that object in a finite number of its own steps, regardless of
the execution speeds of the remaining processes. Thus, a concurrent system in
which all implementations of shared objects are wait-free is resilient to process
crashes. Most implementations in the literature build complex registers from
simpler ones [1, 2, 3, 10, 12, 14, 16, 15, 18, 19, 20, 21], while the others are
related to consensus objects {13, 4].

The bigger picture emerged when Herlihy discovered a close connection be-
tween wait-free implementations and objects of a particular type called consensus!.
In [7], he presented a “universal” construction that transforms the sequential
impiementation of an object into a wait-free concurrent implementation using
only consensus objects and registers. He also showed that analysing primitives
in terms of their ability to implement consensus objects helps order primitives

* Research supported by NSF grants
CCR-8901780 and CCR-9102231, DARPA/NASA Ames grant NAG-2-593, grants
from the IBM Endicott Programming Laboratory and Siemens Corp.

' A consensus object supports two operations, propose ¢ and propose 1, and satisfies
the following two properties. An operation gets a response v only if there is some
prior invocation of propose v. Further, the response is the same for all invocations of
both operations.

70

according to their “strength”. For instance, his results help conclude that com-
paredswap is a strictly stronger primitive than test&set. In summary, his re-
search brought forth several interesting theoretical issues, and we study some of
these in this paper.

1.2 Results

~ We pose and answer the fundamental question: Given (the specification of)
an object @, and a set & of objects, does O have a wait-free implementation
from objecte in S7 We show that this question is undecidable.

— Herlihy showed that the problem of consensus is-irreducible in the following
sense: It is impossible to achieve consensus among 2n processes by com-
bining protocols that solve consensus among 2m processes (m < n) [9].
We strengthen this result: It is impossible to achieve consensus among n
processes by combining protocols that solve consensus among m processes
(m < n).

~ We study how initialization of shared objects affects their ability to solve con-
sensus. In particular, although a queue or a stack can solve name-consensus
between ftwo processes, we prove that an inilially emply queue or stack can-
not. However, with a tiny extra resource such as a 1-bit safe regisier, an
empty queue or stack suffices to solve consensus.

— We study (in a limited sense) the relative capabilities of queues and stacks.
We show that the problems, consensus and repeeied name-consensus, are
solvable using a single queue, but not a single stack. Along the same lines, we
show that a single queue can implement a 1-reader, 1-writer, multi-valued
atomic register, but a single bounded stack cannot implement even a (1-
reader, 1-writer) 3-valued regular register!

- Universal constructions to realize wait-free implementations of arbitrary ob-
jects from consensus objects and registers are due to Herlihy [8, 9], and
Plotkin [18]. Of these, the construction in {9} is intuitive and simple. But
it requires unbounded registers. In contrast, bounded registers suffice for
Plotkin’s construction, but the construction {we believe) is complicated to
understand. We show that a small modification turns Herlihy’s construction
into a bounded construction, but preserves the original simplicity.

2 Preliminaries

A concurrent system consists of processes and (shared) objects. A process in-
teracts with an object by invoking an operation, and receiving a corresponding
response from the object. Processes may exhibit arbitrary variations in their
execution speeds.

An object is specified by a type. An object type T is defined by the set of
operations supported by an object O of type T, and the sequential specification
that specifies how O behaves when these operations are applied sequentially.
For instance, the sequential specification of a stack specifies that a pop must

71

return the latest item pushed into the stack object. In a concurrent system,
operations from different processes may overlap on an object. The sequential
specification is therefore not sufficient to understand the behavior of an object.
Linearizability defined by Herlihy and Wing [10] is & widely accepted eriterion
for the correctness of a shared object. Informally, linearizability requires every
operation execution to appear to take effect instantaneously at some point in
time between its invocation and response.

Let T be an object type and let £ = (T}, T%,...,T,) be a list of object types.
An implementation of T from £ is a function 7 such that given any distinct ob-
jects O1,04,...,0, of type 11,15, ...,T,, respectively, O = I(0;,03,...,0;)
is an object of type T. We call O a derived object (of T) and 0;’s the base objects
of . Such an implementation provides a procedure Apply(pi, op, Q) (for each
operation op of T') that process p; must execute in order to invoke an operation op
on O and receive the corresponding response from O. A step in Apply(p;, op, O)
corresponds to invoking an operation on & base object and receiving the corre-
sponding response, or some local computation. The implementation is wail-free
if Apply(pi, op, @) returns a response in a finite number of steps, regardless of
the execution speeds of the remaining processes. The implementation is bounded
wail-free if the number of steps is not only finite, but also bounded.

3 Decidability

Given an object type T, and a list £ of object types, can we determine whether
7' has a wait-free implementation from £? We show that even the restriction of
this question corresponding to £ containing only register is undecidable. The
proof is by an easy reduction of the halting problem for Turing machines to the
above problem.

Given a Turing machine M, let T(M) represent an object type that supports
a single operation op and has the sequential specification given in Fig. 1.

Claim 1. If a Turing machine M does not halt on blank tape, T(M) has ¢ wait-
free implementation from register.

Proof. If M does not halt, an object O of type T(M) returns the response 0 to
every invocation of op. So the trivial implementation which always returns 0 is
correct and wait-free. o

Claim 2. If a Turing machine M halts on blank tape, T(M) has no wait-free
implemeniation from register.

Proof. If M halts, we show that an object O of type T(M) can be used to
solve name-consensus® between two processes Py and P as follows. A process

? The name-consensus problem requires processes to agree on the name of some process
P guch that P has taken at least one step of the protocol. Further, each process is
required to reach its decision in a finite number of steps.

72

Object state

flag : boolean initialized to false
TM : configuration of the Turing machine,
initialized to the initial configuration of M (on a blank tape)

Apply(op)
if TM is in halting state then
if flag then
return(2)
else
flag := true
return{1)
else
Advance TM by a single move
return(0}
end-Apply

Fig. 1. Sequential specification of T(M)

P; applies op on O repeatedly until it gets either a 1 or a 2 as response. Since M
halts, F; is guaranteed to get such a response in & finite number of steps. If B
gets 1, it decides itself and quits. If P; gets 2, it decides /% and quits. It is easy
to verify that this protocol correctly solves name-consensus between Py and Py.

It is well known that no object that solves name-consensus has a wait-free
implementation from registers[14, 4, 8]. Hence the claim. O

Theorem 3. It is undecidable whether a given object lype has o wail-free imple-
mentation from register.

4 Irreducibility of Consensus

The consensus problem among N processes is defined as follows. Each process Fj
is given a binary input v initially. The consensus problem requires each correct
process to eventually reach the same (irrevocable) decision value d (“agreement”)
such that d € {v;,vs,...,vn} (“validity”). Further each process is required to
decide in a finite number of its own steps (“wait-freedom”).

Herlihy showed that m-register assignment can solve the consensus among
2m ~ 2 processes, but not among 2m — 1 processes [9]. From this he concluded
that when n is odd, it is impossible to achieve consensus among n processes
by combining consensus protocols for m processes, m < n. In this section, we
exhibit for every n there is an object that can be used to solve consensus among
n processes, but not among n + 1 processes. This leads to a strictly stronger

73

conclusion than Herlihy’s as it removes the constraint “when n is odd” from the
above statement. ‘ '

Congider the object type n~bounded peek queue that supports engq and
pesek, and has the following sequential specification: When enq(item) is invoked,
if the queue has fewer than n items in it, then item will be enqued, and the re-
sponse “completed” is returned; otherwise, the queue enters into a faulty state
and returns £. A queue that is in a faulty state remains faulty forever, and
returns L to every subsequent invocation of every operation. peek returns the
state of the queue: L if the queue is faulty, and the list of enqued items (in the
correct order) otherwise. :

Claim 4. The consensus problem among n processes has a selution using a single
n-bounded peek queue Q.

Proof. Initialize @ to contain no elements. Each process F; inserts v;, its input
value, into @ by executing eng(v;, @). Then P; invokes peek({Q), and decides on
the value at the front of Q. . 0

Claim 5. The consensus problem among n + 1 processes has no solution using
any number of n-bounded peck gqueuve objecls and registers.

Proof. For a contradiction, assume there is a protocol. The proof is by the stan-
dard bivalency argument [6]. A system state is bivalent if either decision value
(0 or 1) is still possible. Let P and @ be two processes with inputs 0 and 1 re-
spectively, Then the initial system state is bivalent: When P runs by itself from
the initial state, then due to wait-freedom, it eventually decides, and by validity,
it decides 0; Similarly, Q running by itself results in Q deciding 1.

Starting from the above bivalent initial state, schedule processes in the sys-
tem such that system state progresses from one bivalent state to another. This
cannot be done ad infinidum as that would contradict the assumption that the
protocol is wait-free. Thus there is a (reachable) bivalent system state S such
that whichever process P; (1 < i < n + 1) takes a step s;, the resulting system
state S; is univalent. Since S is bivalent, there must be two processes P; and
Py such that S; is O-valent and Sj is 1-valent. Let F;,, B,,..., F;,_, be the
remaining n — 1 processes.

By standard arguments, we show that the enabled step s; of every process
P; in system state S is on the same shared object O, that O is an n-bounded
peek queue and not a register, and that every enabled step in S is an enq on O
and not a peek.

Given the above, let §' be the system state that results when processes are
scheduled (starting from S) in the order given by Pj, Py, P, Piy, ..., Py, _,. Also
let 5" be the system state that results when processes are scheduled (starting
from S) in the order given by P, P;, P;,, B, ..., F;,_,. Clearly object O is in
a Taulty state in both §' and 5", Thus every process and object is in the same
state in &' and S, Therefore no process can ever distinguish §’ from S”. Yet
S’ is O-valent, and S§" is 1-valent, which is impossible. 0

74

The above claim holds even if the object type is strengthened to also support
the deq operation with the obvious semantics.

5 Initialization and Consensus

In this section, we show that the solvability of consensus is sometimes sensitive
to the initial state of the underlying shared objects,

Herlihy showed that a single queue or a stack suffices to solve the name-
consensus problem among 2 processes [8]. We show that when the initial state of
the queue or stack is restricted to be empty, neither can solve name-consensus.
We also show that with a tiny additional resource of a single {1-reader, l-writer)
safe bit, an initially empty stack/queue solves name-consensus (between 2 pro-
cesses). Finally we exhibit some objects whose ability to solve consensus does
not.depend on their initial state.

To show that a single initially empty queue does not suffice to solve the
narme-consensus problem among two processes, we need some definitions and a
lemma, A sequence S is a +/- sequence if each element in S is either a “4” or a
“” 8 is posilive if in every prefix of 5, there are strictly more “4+"s than “"s.
If e, &' are elements of S, we say e consumes e’ if eig a “”, ¢ is a “+”, and if
e is the k'™ “» of S, then ¢’ is the k** “4” of S. Thus every “” of S consumes
the earliest unconsumed “+” of S, We say § is colored with (a color) C if each
element of S is colored C.

Given two finite positive 4 /- sequences R and G colored red and green re-
spectively, a hiding sequence of R, GG is any interleaved sequence 5 of R and &
with the property that every “-” in S consumes a “4” in S of the same color.

Lemma 6. Given two finite posilive +/- sequences R and G colored red and
green respectively, theve is a hiding sequence of R and G.

Proof. By induction on |G|. The base case when |G| = 0 (i.e., G is an empty
sequence) is obvious. Now we show the induction step. Write R as R; o Ry, where
R, is the prefix up to the k** “+” of R, k being the number of “”s in R. Similarly
write G as G 0Gy. From the definitions, it is obvious that |R;| < |R|, |G1| < |G|,
and R,, G are positive +/- sequences, From the induction hypothesis, there is
a hiding sequence S| of Ry and (1. Note that there will be exactly as many
unconsumed “+”s in 5, as there are “”s in Ry and Gy put together. It should
be obvious that Ry and (G2 can be interleaved into S5 such that an unconsumed
“+” in S} is consumed by a “” in Sp of the same color. Thus S; 0.5y is a hiding
sequence of R and G. O

Theorem 7. There is no protocol that solves name-consensus among two pro-
cesses using a single intially emply gqueue.

Proof. For a contradiction, assume there is such a protocol P for two processes
p and ¢. Let Sp = 84, 83,..., 81 be the sequence of all steps executed by p when
it runs all by itself from the initial system state. At the end of the run S,, p

75

decides itself. Similarly, let S, = £1,22,...,# be the sequence of steps executed
by ¢ before it decides itself when running all by itself from the initial system
state. Clearly each step s; and #; is either an enq or a deq. Interpreting the enq
as a “4”, and the deq as a “-”, let S, be the mazimal prefix of S, such that
every eng in Sy, is consumed by some deq in 5y. Let Sp = Sy 05y Deﬂne Sp and
57 similarly. It is easy to see that §Y and S"’ are both posltlve +/- sequences,
and thus (by the previous lemma) have a hldmg sequence S". It is easy to verify
that S} 0 57 0 5% is a valid run from the initial state in which p decides p, and g
decides q. This contradicts that P is a name-consensus protocol. 0

The following theorem has a proof similar to that of Theorem 11, and is
omitted.

Theorem 8. There is no protocol that solves name-consensus among two pro-
cesses using g single initially emply stack.

Theorem 9. Figure 2 gives a name-consensus protocol for processes p and g
using only a single initially empty stack and o I1-bit (1- readcr, I-writer) safe
regisier,

S : shared stack (initially empty)
R : 1-bit safe register (initially contains 0)

Procedure name-consensus(p)
push(S, “P won”)
val := R
if (val = 1) then

if pop(S) = nil then

decide(p)

eise decide{g)
else decide(p)
end-Procedure

b IR =T B U

Procedure name-consensus(q)}

8 . R:=1
9 if (pop(S) = nil} then
10 decide(q)

11 else decide(p)
end-Procedure

Fig.2. Name-consensus protocol from an empty stack and a 1-bit register

76

In fact, the protocol in Fig. 2 works correctly even for an empty queue: just
change push to enq and pop to deq. Also instead of the register R, an empty
stack §' or an empty queue can be used: replace “val := R” (Line 2) by “val :=
pop(S’')”, and replace “R := 1” (Line 8) by “push(S’,1)".

Finally we point out that there are objects whose ability to solve consensus
does not depend on their initial state. For instance, fetch&add can solve con-
sensus among 2 processes, and read-modify-write, compare&swap can solve
consensus among n processes, no matter how they are initialized. Of course, we
require that the initial state be “common knowledge” to all processes.

6 Queue vs. Stack

In this section we present three problems, each of which can be solved using a
single queue, but not a single stack,
6.1 Consensus

Theorem 10. The protocol in Fig. § solves the consensus problem among 2
processes using a single queue,

€ : shared queue _
Initialize @ to contain iwo elemenis: winner, loser
/¥ winneris at the head of @ ¥/

Procedure consensus(FP;, v;) /* v; is the input value of P; */

eng([F, v:], Q)
if deq(@)= winner then

decide(v;)

else :
Apply deq (once or twice) until [P, v} is returned
decide(v;)

end-Procedure

Fig. 8. Consensus protocol using a single quene

Theorem 11. There is no proiocol to solve 2 process consensus using e single
stack, no matler what the initial state of the stack is.

Proof. Suppose, for a contradiction, there is a protocol P for consensus among
p and ¢ using a single stack, initialized to a sequence o, = ay,az,...,a; of
items (where a; is at the top of the stack).

77

Let R; be the sequence of steps of p when p’s input value is i (: € {0,1}) and
p runs all by itself (from the initial system state} to completion. Let a; be the
contents of the stack at the end of the run R; from the initial state. Let 3; be
the maximal common prefix of ainit and ;. Without loss of generality, let
be the bigger of fy and 8. From the above definitions, the following facts can
be easily deduced:

1. Let Rf be the maximal prefix of Ry such that the stack holds 3y at the end
of the run R of p. Thus Ry = Rf o R{ for some RY. It is easy to see that
every prefix of Ry has at least as many push steps as pop steps.

2. Ry can be split into R} and R{ such that R, = R} o R} and starting from
the initial system state, at the end of the run R} of p, the contents of the
stack are fp.

Now consider the following scenario.
Scenario §%

1. Process p’s input value is 0. And p executes the steps in R} and temporarily
stops.

2. Process ¢’s input value is 1. And ¢ executes to termination, deciding some
value v,. (This termination of ¢’s execution is guaranteed by the wait-
freedom of the protocol P).

3. Process p resumes and executes to termination, deciding v,.

We claim that v, = 0 in the above scenario. This is because when p resumes in
item 3, it executes steps in Rfj, and since every prefix of RYf has as many push
steps as pop steps, process p never realizes that ¢ took any steps at all. In other
words, the run in S1 is indistinguishable to p from the run Rg. Thus p decides
0 in 81 as in Ry. Due to the agreement property of consensus, it follows that
vy = vp = 0 in 81,

Now consider another possible scenario $2.
Scenario $2 (starts from initial system state)

1. The input value of p is 1, and p executes the steps in R} and temporarily
halts.

2. Process ¢’s input value is also 1, and ¢ executes to completion, deciding some
value, v,. ‘

3. p resumes and completes its execution, deciding some value v,

Note that Scenarios S1 and S2 are indistinguishable to ¢. Thus ¢ decides 0 in
S2 as in 1, Note however that neither process proposed 0 in $2. This contradicts
that 7 is a consensus protocol. O

6.2 Repeated Name-Consensus

In this problem, a process p executes name~consensus(p,i) to learn the out-
come of the #** contest of the name-consensus. We require: (for all p, g, 1),
(1) name-consensus(p, i) and name-consensus(g, ¢) return the same value; (2)

78

name-congensus(p, {) returns ¢ only if ¢ has already executed at least one step
of name-consensus(q,?); (3) Process p invokes name-consensus(p,i + 1) only
after completing name-consensus(p,i).

The (single) name-consensus protocol for two processes using a queue was
given in [8]. The idea is to initialize the queue to two items, winner and loser
(winner at the head). The process that deques winner is the winner of name-
consensus. We adopt the same basic idea to solve repeated name-consensus.

Before performing the round k of repeated name-consensus, a process inserts
items that will be useful to perform round k + 1 later. However, if each process
inserts items for round k 4 1, the question arises as to which of them must
actually be used. We made up a simple rule; For round & + 1, use the items
inserted by the process that won round k. Thus items are of the form [p, k]
where p is the name of the process that inserted the item in the queue, and &
is the round number of the consensus it is intended for. A process wins round &
only if it deques 2 (out of the 3) items with round number & that were inserted
by the winner of round & - 1.

A process maintains three persistent local variables: round, is p’s knowledge
of the number of rounds the outcomes are already known for; prev-winner, is
the name of the process winning round,; Seen, is the set of all items p has so
far removed from the queue®. The algorithm appears in Fig. 4.

Theorem 12. Figure § gives a repeated name-consensus protocol for processes
p and ¢ using a single queye.

In contrast, we can show the following impossibility result for a stack. The
proof is similar in spirit to the proof of Theorem 11, and is omitted.

Theorem 13. There is no protocol that solves repeated name-consensus for two
processes using a single stack.

However we can show that using four stacks, repeated name-consensus for
two processes can be solved.
6.3 Atomic Register

Theorem 14. Figure § gives an implementation of a (1-reader, I-writer) N-
valued atomic register using a single gueue Q. Q will never conlain more than
two items, and each item is of size N,

We state the following theorem omitting the proof,
Theorem 15. The following are true:

1. A single bounded stack implements a (I-reader, I-writer) N-valued safe reg-
ister,

% We don’t need to maintain this set, We do so for ease of writing the algorithm.

79

@ : shared queue (initialized to 3 identical items where each item is [p, 1))
roundp, prev-winnery,, Seeny! local persistent variables of p

(initialized to 0, p, B respectively)
roundg, prev-winnery, Seeng: local persistent variables of ¢

(initialized to 0, p, B respectively)

Procedure name-consenzus(p, k)
if k < roundy then
return(g)

exit Procedure
/* insert 3 identical items for potential use ir round k +1 */
for i :=1t0 3 do

enq([p, k +1], Q)
repeat

v = deq(Q)

Seeny 1= Seenp U {v}
until either (Seenp has two copies of [prev-winner,k]) or (Seenp has [*,] and I > k)
In the former case, do

prev-winnerp = p

round = k

return(p}

exit Procedure
In the latter case, do

prev-winnery 1= ¢

roundp = {1

return{g)

exit Procedure

end-Procedure

Fig. 4. Repeated name-consensus using a queue

2. A single bounded stack implements a (1-reader, I-writer) boolean alomic
register.

3. A single stack cannot implement a 3-valued (1-reader, I-writer) regular reg-
ister if the number of items in the stack cannotl grow unbounded.

4. If stack can have an unbounded number of items, then it can implement a
(1-reader, 1-writer) N-valued atomic register.

7 A Simple and Bounded Universal Construction

An object type T'is universal for a set S of object types if every 7" € S can be im-
plemented from (T, register). Herlihy showed that consensus is universal for
any object type that has a sequential specification [8, 9]. Herlihy’s construction
is intuitive, but requires unbounded registers. We make a simple modification

80

Q: shared queue
Initialize Q) to contain an item v where v is initial value of register
prev-read: local persistent variable of the reader
prev-written: local persistent variable of the writer

Read() Write(v)

v = deq(Q) if v #prev-written then

if v == nil then eng(v, Q)
return(prev-read) w 1= deq((})

else prev-read := v if w = v then
return{) enq(v, Q)

Fig. 5. Implementing an atomic register using a queue

to his construction to achieve the same result using only bounded registers. In
the following, we assume that the reader knows Herlihy’s construction, and its
proof [9]. The discussion and the claims below also use the terminology in [9).

We first turn Herlihy’s construction without memory management into an
equivalent construction (without memory management). We then explain how
the memory management works on top of this modified construction.

In Herlihy’s construction, the field seq serves two purposes: First, in State-
ment 6 in [9], it helps all processes to determine the unique identity of the process
that must be “helped” in a given slot of the list. This is crucial to achieving wait-
freedom (rather than just “non-blocking”). Second, in Statement 3, it helps a
process P to move “close” to the head of the list after P has announced its op-
eration. This is crucial to achieving bounded waii-freedom (as opposed to finiie
wait-freedom). The first purpose is served just as well even if seq is bounded in
the range [0...n]. The second purpose, however, will no longer be served since
the correctness of Statement 3 depends onr the monotonic rise of the sequence
numbers. We fix this by adding an extra field, a boolean flag, to each cell. The
idea is to maintain £lag = true for the head of the list, and flag = false for
the remaining cells, and thus locate the head of the list without depending on a
total order on the sequence numbers,

Initially, the object is represented by a unique enchor cell with seq = 1, flag
= true, a creation operation, and an initial state. All other cells hold flag =
Jalse. For all P, announce[P] and head [P] hold the pointer to the anchor cell.

The modified construction {without memory management) is shown in Fig.
6. Statement 3 of Herlihy’s construction has been replaced with a new Statement
3. Statements le, Ha, and 13a have been added. The seq field is still assumed to
be unbounded.

The following claim is identical to Lemma 1 in {9).

Claim 16. The following assertion is invariani; |concur(P)| > n => announce[P] €

81

UNIVERSAL (what: INVOC) returns (RESULT)

mine : *cell :=

la [seq: 0

1b - invec : what

1lc nev : creat(consensus object)

id after : creat{consensus object)

le before : null

i flag : true)

2 { announce[P] := mine; start(P) := max(head); concur(P) := 9)
3a* repeat

ptr := Find-Head()
until (ptr # null) v (announce[P).seq # 0)

3b if (announce[P] .seq=0) then
(head[P] := ptr; head := head U {ptr}; VQ : concur(Q) := concur(Q) U {ptr})
4 while (announce[P].seq=0) do
5 ¢ : *cell ;= head[P]
5a * (c.before).flag = false
6 help : *cell := announcelec.zeqmodn + 1]
7 if help.seq= 0 then

prefer := help
else prefer := announce[]

8 d := decide(c.after,prefer)

9 decide{d.new, Apply(d.invec,c.new. Btate))

10 d.before :=c

11 d.seq := ¢.seq+1

12 { head[P] := d; head := head U {d}; YQ : concur(Q) := concur(Q) U {d})
13 head[P] := announcelP]

132 * head[P].before.flag = false

14 return(announce [P] .new.result)

Fig. 6. Modified universal construction

head. -

When a process accesses a cell d (i.e., d is the pointer to the cell) in the list, it
sets (d.before.flag) to false (Statements 5a, 13a). Also notice that if a cell
¢ & head, then either ¢c.flag = false or (because of the order in which seq and
flag are initialized) c.seq = 0. Putting these elements together, the following
can be shown. Define a predicate P(c) on cell ¢ as: P(c} = c.flag A c.8eq # 0.

Claim 17. For every cell ¢ in the system, the invariant I(c) holds: Z(c) = (c =
maz(head) A P(c)) V (¢ = maz({head).before) V (¢ € head A —c.flag) V (c ¢
head A =P(c)).

82

Procedure Find-Head()
ptr = null
for @ :=1ton do
temp := head[Q]
if (temp.flag) then
if (temp.seq# 0) then
ptr := temp
end-for
return(ptr)
end-procedure

Fig.7. The Find-Head procedure

We use M to denote a snapshot of the system®. We write []a to denote the
value of the expression enclosed in the square brackets evaluated in the snapshot
M.If M and M’ are snapshots, M’ > M denotes that M' is taken no earlier
than M,

The following claims are phrased so that they will remain true even after the
memory management details are imposed. The order in which seq and flag are
initialized, and the order in which the conditions are evaluated in the procedure
Find-Head() (Fig. 7) are crucial to the correctness of these claims.

Let M, M' denote snapshots just before and after the execution of Find-
Head() by process P. Let m = [maz(head)lpr, s = [maz(head)}sr.seq, and
m' = [maz(head)|prr, 8’ = [maz(head)| s .seq.

Claim 18. s = s’ implies Find-Head() returns p such that [p.seq)), = s+ 1 or
sors—1.

Claim 19. Suppose Find-Head()} returns p # null. Then [p.seqll; > s —1 or
announce[P].seq # 0.

Following is an easy consequence of the above two claims.
Claim 20.

~ Therepeat ... until loop (Statement 3a) terminates in at most n+1 iterations.
~ The following holds just before Statement 4. (start(P).seq—1 < head[P].seq <
maxz(head).seq) V (announce[P).seq # 0.

The above claim is the analog of Lemma 4 in [9]. Using Claims 16 and 20,
and proceeding exactly as in [9], we have
Theorem 21. The protocol in Fig. 6 is correct and bounded wait-free.

* Our construction does not take snapshots, We only use them for convenience in the
proofis.

83
7.1 Memory Management

We adopt the same idea as in [9]. A process executing an operation traverses no
more than n + 2 cells®. When a process is finished threading its cell, it releases
each of the n + 2 preceding cells by setting a release bit: It sets the i** release
bit in a cell that is ¢ hops away from itself. A cell may be claimed and reused
by its owner process if all the n + 2 release bits of the cell are set. Just before
reinitializing a reclaimed cell, the owner resets all the release bits.

In addition to the above, the following Statement (13b) needs to be added
to the basic construction®,
i3b announce [P] := anchor

While process P is allocating a cell, there could be a maximum of n — 1
outstanding operations. Each cell corresponding to such an incomplete operation
could prevent the reclamation of a maximum of n + 2 cells. In addition, there
could be a maximum of n+4 2 cells (each corresponding to a completed operation
of P) locked up in the list, because there are not enough cells following them
to have all their release bits set”. Thus the maximum number of cells that P
will be prevented from reclaiming is n(n 4 2). Thus if each process has a private
pool of n(n +2) + 1 = (n + 1)? cells, allocating a new cell for P’s operation will
always be possible. Qur requirement of (n + 1)? cells per process is n more than
the (n? +n+1) cells per process of [9]. However we can match that number with
a slightly more complex algorithm for Find-Head() (not shown here).

Proceeding exactly as in [9], our construction with the above memory man-
agement, can be proved correct.

We have so far assumed that the field seq in a cell is an unbounded reg-
ister. While it facilitates the proof, cur construction does not make use of its
unboundedness anywhere. Well, this was the whole purpose of our construction!
So we make it a bounded variable in the range [0...n], and change Statement
11 to “d.seq := c.seqmodn+1”. It is trivial to verify that this change does not
alter correctness.

Acknowledgement

We thank Tushar Deepak Chandra for his help with some results in Sect. 6.2
and 6.3.

References

1. Bard Bleom. Constructing two writer atomic registers. In The 6th Annual Sym-
posium on Principles of Distributed Computing, pages 249-259, 1987,

® As opposed to n +1 in [9]. This difference is due to the difference between Lemma
4 of Herlihy’s and Claim 20 of ours.

5 Statement 13b or some alternative fix is needed for correciness even in Herlihy’s
construction, although this detail was not mentioned in [9].

" This point was overlooked in [9] in the counting,

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

84

. J. Burns and G. Peterson. Constructing multi-reader atomic values from non-
atomic values. In The 6th Annual Symposium on Principles of Distributed Com-
puting, pages 222-231, 1987,

. SBoma Chaudhuri and Jennifer Welch. Bounds on the costs of register implemen-
tations, Technical report, University of North Carolina at Chapel Hill, Dept. of
Computer Science, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599-
3175, 1990.

. B. Chor, A. Isracli, and M. Li. On processor coordination using asynchronous

hardware. In The 6th ACM Symposium on Principles of Distributed Computing,

pages 86-97, August 1987,

P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrent control with readers and

writers, Communications of the ACM, 14(10):667-668, 1971.

Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of distributed

consensus with one faulty process. JACM, 32(2):374-382, 1985,

M.P. Herlihy. Impossibility and universality results for wait-free synchroniz ation.

In The 7th ACM Symposium on Principles of Distributed Computi ng, 1988,

M.P. Herlihy. Whait-free synchronization. ACM TOPLAS, 13(1):124-149, 1991.

. M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concur-

rent objects. ACM TOPLAS, 12(3):463—492, 1990, _

Prasad Jayanti, Adarshpal Sethi, and Errol Lloyd. Minimal shared information

for concurrent reading and writing. In Workshop on Distributed Algorithms, Del-

phi, Greece, October 1991. (Will appear in Lecture Notes in Computer Science,

Springer-Verlag).

Leslie Lamport. Concurrent reading and writing. Communications of the ACM,

20(11):806-811, 1977.

Leslie Lamport. On interprocess communication, parts i and ii. Distributed Com-

puting, 1:77-101, 1986,

M.C. Loui and Abu-Amara. Memory requirements for agreement among unreliable

agynchronous processes. Advances in computing research, 4:163-183, 1987.

R. Newman-Wolf. A protocol for wait-free, atomic, multi-reader shared variables,

In The 6th Annual Symposium on Principles of Distributed Computing, pages 232—

248, 1987.

G. Peterson and J, Burns. Concurrent reading while writing ii: the multi-writer

case. In The 28th Annual Symposium on Foundations of Computer Science, 1987.

Gary L. Peterson. Concurrent reading while writing. ACM TOPLAS, 5(1):56-65,

1983.

Serge Plotkin. Sticky bits and universality of consensus. In The 8th ACM Sympo-

sium on Principles of Distributed Computing, pages 159-175, Angust 1989.

R. Schaffer. On the correctness of atomic multi-writer registers. Technical report,

TR No: MIT/LCS/TM-364, MIT Laboratory for Computer Science, 1988,

A. Singh, 1. Anderson, and M. Gouda. The elusive atomic register, revisited, In

The 6th Annual Symposium on Principles of Distributed Compuling, pages 206~

221, 1987.

¥. Vidyasankar. An elegant i-writer multireader multivalued atomic register. JPL,

30:221-223, 1989,

P. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hard-

ware. In The 27th Annual Symposium on Foundations of Computer Seience, 1986,

Wait-free Test-and-Set
(Extended Abstract)

Yehuda Afek!, Eli Gafni®*, John Tromp?, and Paul M.B, Vitanyi®?®

! Computer Science Department, Tel-Aviv University, Ramat-Aviv 69978 Isracl.

? Department of Computer Science, University of California, Los Angeles CA 90024.
% Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterda.m, The
Netherlands.

* AT&T Bell Laboratories, 600 Mountain Avenus, Murray Hill, NJ 07974
% Faculteit Wiskunde en Informatica, Universiteit van Amsterdam.

Abstract, This paper presents an economical, randomized, wait-free
construction of an n-process test-and-set bit from read write registers.
The test-and-set shared object has two atomic operations, test&set, which
atomically reads the bit and sets its value to 1, and the reset opera,tion
that resets the bit to 0.

We identify two new complexity measures by which to evaluate wait-
free algorithms: (a) The amount of randomness used, and (b) ‘Parallel-
Time'--the maximum sequential depth of an execution (i.e. longest chain
of operations that must precede each other).

The previously best known algorithm for n-process test-and-set [Her91]
takes an expected £2(n®) parallel time, and (2(n*) sequential time per
operation, and £2(r?logn) space per processor. In contrast, our direct
implementation improves this on all counts by using O(logn) coin flips,
QOflog n} parallel time, O(n) sequential time, per operation, and G(n)
space per processor. Thus the question on the difference in the ex-
pected complexity of randomized constructions of concurrent objects
from read/write registers is raised.

1 Introduction

A recent watershed paper by Herlihy [Her88] established the existence of a hier-
archy of wait-free concurrent objects. The hierarchy classifies objects according
t0 the number of processes among which these objects can solve the consensus
problem. An object has a consensus number & if & is the maximum number of
processors for which the object can be used to solve the consensus problem. Thus
objects with higher consensus number cannot be deterministically implemented
by employing objects with lower consensus numbers. Randomized implementa-
tions are required in order to implement higher objects in the hierarchy from
lower ones. This gives rise to the intuitive feeling that as one goes up the hier-
archy more randomness is needed.

* Supported by NSF Presidential Young Investigator Award under grant DCR84-51396
& matching fundg from XEROX Co. under grant W881111.

86

The test-and-set consensus number is 2 while that of read/write atomic reg-
isters is 1. In this paper we propose an economical randomized implementation
of n-processes test-and-set from read/write registers.

Each of the n processors that share the test-and-set object accesses it through
the operations test&set and reset. The sequential specification of the object as-
sumes that the two operations operate on a binary register which is initialized
to 0. The test&set operation is like a swap of the register with a local variable
whose value is 1, i.e. it atomically reads the register, writes 1 into it, and returns
the value read. A reset operation writes 0 to the register and, returns no value.
The specification also imposes a well-formedness requirement on the processors
behavior, a processor can perform a reset only if its most recent operation was
a test&set returning 0 (i.e. a successful test&set). Concurrent test-and-set is lin-
earizable if each operation appears to occur in an indivisible time instant inside
the operation’s interval, and with respect to these serial instances the object
satisfies the sequential specification above {Lam&6).

Aside from their consensus number concurrent objects may be characterized
by the following parameters:

— Single use vs. Multi use: A single use concurrent object can be accessed
at most one time by each processor. It is in general easier to construct single
use objects than multi use ones.

— The number of processors that can access the object.

Note that 2-process binary consensus is equivalent to a single use 2-process test-
and-set object. Furthermore, the consensus number of n-process test-and-set
is 2, but the consensus number of n-process ternary test-and-set is already co
[LAAS7, Her91] (ternary test-and-set is a variant of read-modify-write).

In the same paper, [Her88], Herlihy established the existence of universal
objects, whose consensus number is co. That is, objects which are at the top
of the hierarchy. The randomized implementation of these objects, especially
repeated consensus, from read/write registers has been the subject of research
for a few years now [Abr88, Plo88, ADS89, Asp90, SSW90, Her91].

Previous work to implement n-process wait-free test&set proceeded by imple-
menting a universal wait-free concurrent object in terms of repeated randomized
n-process ‘sticky bits’, and bounding space by garbage collection, [Plo88]. The
previously best known algorithm [Her91] for n-process test-and-set goes by way
of constructing a general read-modify-write object using repeated randomized n-
process consensus and a space garbage collection subroutine as building blocks.
It uses 2(n?) mutually independent coin flips, to implement the best algorithm
for m-process consensus [Asp90, SSWO0, Her91], and its time complexity is
(n?), per operation, and 2(n? logn) space per processor,

In this paper we give a simple direct implementation of wait-free n-process
test-and-set in terms of atomic read/write variables. It improves the best previ-
ous method on all counts by using O(logn) flips of pairwise independent coins,
O(n) sequential time, per operation, and O(n) space per processor,

A feature of shared memory algorithms is the fact that from time to time
a processor may perform a set of (many, e.g. O(n)) operations, whose order of

87

execution is unimportant. This gives rise to the question about the time it takes
to complete such a set of operations. We advocate the view that processors com-
municate with memory via an interface, be it a communication network or a
bus. In either case, getting to the memory in the former, or getting control of
the bus in the latter, is the dominant factor. Thus in both cases it can be argued
that making n simultaneous requests or a single one should not make much dif-
ference. In the case of communication networks the node issues n simultaneous
requests to the network (very much in the same way that we allow a processor
in a network to simultaneously send messages to all of its neighbors). We thus
define the parallel time complexity measure in which we charge each set of simul-
taneous concurrent operations 1 unit of time. Under the new measure, the time
complexity of Herlihy’s algorithm is £2(n?), while the parallel time complexity
of our algorithm is O(logn).

Our construction proceeds in two steps: First we construct a single-use n-
process test-and-set object from a 2-process test-and-set object. Second we trans-
form the single-use test-and-set object into a multi-use (repeated) test-and-set
object. Any single use 2-process test-and-set object can be used as the build-
ing block of the first step, thus one can use the 2-process test-and-set con-
struction of Tromp and Vitdnyi [TV90], or any 2-process consensus protocol
[Asp80, AH90, SSW90, BRI1]. All of these constructions have a constant ex-
pected complexity {n = 2).

Our protocols to extend test-and-set from 2-process single-use to n-process
repeated are deterministic (the consensus number of n-process test-and-set is
also 2 !). The randomness of the algorithm is only in the building block of a
single-use 2-process test-and-set. Although it may take any 2-process test-and-
set solution, it does not implement the n-process solution from the 2-process
golution in the strict sense of the word (a la [Her88]). Rather, it is more like a
compiler. All the formal proofs of correctness and of the complexity results are
omitted from this extended abstract.

We view test-and-set as the wait-free equivalent of mutual exclusion. Cap-
turing the test&set bit is analogous to getting the critical section (CS). However,
in mutual exclusion, a processor that failed to get the CS is kept busy waiting
until it enters the CS, while in test-and-set, a failed processor returns to the
“remainder” section without going through the “Critical-Section”. In test-and-
set we should only be able to linearize its decision, that the “CS” is occupied,
to be after we linearized another processor decision to enter the “CS” (which is
in general not required from mutual exclusion protocols, where a processor may
be denied entry at some point while at that point there is still no other pro-
cessor that is about to enter the CS). The ease and simplicity of implementing
test-and-set as opposed to congensug, stems from the fact that well punctuated
rounds are now identified by the execution of the “CS” exit protocol (the re-
set operation). Thus, if the execution of the “CS” is slow, as long as the single
processor executing it did not finish, this processor can still be accounted for re-
jecting other processors from entering the “CS”, Therefore, we can rely on this
single processor to do all the book-keeping so that we can precisely know what

a8

is obsolete and what is current data. This is not the case with consensus, fetch-
and-add and other concurrent objects, where the moment any processor makes
a decision, it can start a new round. Thus test-and-set is much more ‘sequential’
in this respect. '

2 Informal Description of the n-Process Algorithm

‘We agsume that the n processors perform test&set and reset operations according
to the following generic template:

Forever do
remainder; - section
if test&set = 0 then
zero — section
reset
fi
od

Conceptually any run of the n-process solution will be divided intc rounds.
A round is the interval between the termination of two consecutive reset oper-
ations. (The first round starts in the beginning of the run and ends in the first
reset operation.) The test-and-set semantics together with the assumption that
processors follow the above template guarantee that no two such operations are
concurrent,)

In each round a single-use n-process test-and-set protocol is executed. That is,
an algorithm which is correct for an execution in which no processor will execute
reset. The single-use algorithm is then composed into a multi-use algorithm (the
desired solution). ‘

‘We assume that in the single-use algorithm all variables are atomic single-
writer-multi-reader registers.

2.1 Single-use n-process test-and-set

In this section we construct an n-process. single-use test-and-set from similar
2-process building blocks. The basic idea is rather simple: have the n processors
contest each other in a tennis like (binary tree) tournament [PF77]. Only one
processor can win the tournament, and it is the winner in the single-use test-
and-set, while all other processors lose. In each level of the tournament we match
the winners of the previous level in pairs (according to a fixed binary tree) that
compete each other using a 2-process test-and-set. A processor loses (returning
1) a8 soon as it loses in a match. The problem with this solution is that one
processor could lose, while the eventual winner has not yet started to play. This
kind of a scenario violates the gerializability condition of n-process test-and-set.
To overcome this problem each processor that loses will prevent any processor
that has not yet started, from winning (see Figures 2.1 and 2.1).
The following facts hold for the single use Test&:set:

89

Code for processor i single-use n-process test-and-set

function SINGLE-USE-TEST&SET
for j=1 to n do if r[j].D = 1 then return(l) and exit l od

if tournament= 1 then %See next figure for the tournament.
r[i].D =1 %Close the door.
return{1}

else
return(0)

end-function SINGLE-USE-TEST&SET
Fig. 1. Single use n-process test-and-set.

If processor i had lost, then any processor arriving after i had lost should also lose.
This is implemented by an array, called “door”, of atomic single-writer/multi-reader
bits. That is, every processor has a 1-bit field in its own variable, together comprising
an n-bit vector D. The door is open for a processor if all the r[k].D bits are found = 0,
1 <k < n. It is otherwise closed. Processor i closes the door by by setting r[i]. D to 1.

Initially all the registers are set to 0.

1. In a bounded expected number of steps a processor returns either 0 or 1.
Sketch: 2-process T&S involves a constant expected number of steps. There-
fore the work at each floor is bounded and since the number of floors is
bounded, the total number of steps is bounded.

2. Exactly one of all the test&set operations in a single use returns 0, and it
starts before any other terminates. Sketch: by induction on the floor numbers
of the tournament. Also the winner necessarily found the door open, which
losers close before they terminate.

2.2 The multi-use test-and-set algorithm

For ease of exposition we present the multi-use algorithm using unbounded
round-numbers. In the sequel we show that the system of round_numbers we use
is required to satisfy the requirements of a sequentia! time stamp system, thus,
replacing the unbounded numbers with bounded ones is conceptually straight
forward using [LTV89, IL87).

Each processor hag its own variable which it alone can write and all others
can read. This variable is divided into a number of fields (so far we have seen
field-1: the single-use 2-process variables, field-2: the D bit of the door, and field-
§: the floor variable for the single-use n-process tournament). We add another
field now, called round_number, which will determine whether the other fields
are considered up fo date, or out of date, in which case certain default values
are assumed instead.

The code of the multi-use shell appears in Figure 3. The reset operation by -
processor p consists of atomically setting all the single-use test-and-set fields
of p to their initial values and increasing p's round number by 1 (this is the
only way by which round numbers are increased). Each test-and-set copies the

80

Code of the tournament for processor 4

function TOURNAMENT
for j=1 to logn do

If 2-process-test&set(Sh[1, j])=1 %Each read in the 2-process-test&set
then return(1) and exit fi %is performed as explained below.
od
return(0)

end function TOURNAMENT

function READ(X) when called from within 2-process-test&set(Sb[s, 5])
for each p in Sbf4, 7] do
rp = 7[p]
if rp.floor > j then return(1) and exit the protocol i
if rp. floor = j then return(rp.X) and exit the rEAD fi
od :
return{z) %x is X's initial value in the 2-process-test&set
end function READ(X)

Fig. 2. The tournament function.

The implementation of the tournament follows the ideas of Peterson and Fischer [PF77]
(who constructed n-processes mutual exclusion from 2-process mutual exclusion). We
assume that in the 2-process single-use test-and-set each processor has one register
that it writes and the other processor reads. The tournament consists of log n floors,
corresponding to the levels of a binary tree tournament, whose leaves are the processors,
Each internal node in the tree corresponds to a 2-process test-and-set fight between
winning processors from each subtree of that node. A processor that test&set 0 in a
2-process test-and-set is considered to win the fight. Processors go up the floors, to
the corresponding node in the binary tree. To this end, we add a floor field to the 2
process test-and-set register of each processor, indicating its progress up the floors of
the tonrnament, Processor ¢ that gets to the j’th floor looks for the group of processors
that belong to the subtree sibling to the subtree it came from. This group is called
Sb[¢, 5] and assuming that processor ids are 0,1,2,...,n — 1,

Sb[, 5] = {a[i, 5, ali, 5]+ 1,...,ali, 5]+ 2 — 1}.

where afi, j] = 2911 |_2-',-J — 271 (l.ﬁ":l'J - 1). Now we use the invariant that only one
processor from that group may change its 2-process test&set variables at this level.
Whenever, in the 2-process algorithm it reads a variable X of the other processor, it
will now read the variable X of all processors in the sibling subtree, Sb[i, j]. There are
three cases according to which the processor interprets the value of X. Case 1: If one
of Sb[i, ;] has a higher floor number, then the processor has lost the fight (returns 1
end exits). Case 2: If none of Sb[i, j] has floor number equal to that of ¢, processor
i assumes the default initial value for X. Clase 8: There is only one processor, k, in
5b(i, 5] with equal floor number (the winner of the sibling subtree), then processor i
reads the value of X of processor k. A processor that arrives at the highest floor has
won the tournament.

91

Code for processor i:

function TEST-AND-SET
read all r[f) registers
mex i= max; {r[j].round number}
if (participated; = max)

then return(1) and exit %Already lost in this round
else atomically{ r[¢] := [2-process-variables: initial values,
D: 0, %set all i's single-use fields
flcor: 0, %to their initial values

round.number: max]}
participated; 1= maz
return (SINGLE-USE-TEST&SET) %Each read of a shared variable in the

single-use is done via the extended-read of Figure 4
fi

end-function TEST-AND-SET

function RESET
atomically{ rfi] := [2-process-variables: initial values,
: 0, %%set all i's single-use fields
flcor: 0, %to their initial values
round number: participated; + 1]}
end-function RESET

Fig. 3. Implementing multi-use test-and-set from single-use.

Code for extended-read of variable X of j (with initial value z) by processor
i .

extended-read(X, j):

m := read(r[])

if r[j].round-number = r[i).round_number then
return{m.2-process-variables. X) fi

if r[§).round_number < r[i].round_number then
return(z) fl : {* @ is the initial value of X *}

if rfj].round number > r[i].round_number then
return 1 and exit the algorithm fi

Fig. 4. Extended read.

92

round number it participates in into a local variable ‘participated’, so it can
later check for & new round. To start the algorithm a processor checks for the
maximum round number of all other processors. If it has already participated in
this round it returns 1. Otherwise it writes the new round number, and sets all
its single-use variables to their initial values in one atomic write. When executing
the single-use algorithm, any value which is read together with & round number
which is less than its own, is interpreted to have the initial default value of the
single-use algorithm. A processor executing the single-use algorithm, that reads
a variable with a round number larger than its own, returns 1 for its test&set
and exits.

Yor the code of how to interpret a read in the single-use algorithm see Fig-
ure 4.

To dispense with the unbounded round numbers we employ standard tech-
niques like the scheme of [LTV89)], or the Sequential Time Stamps System (STSS)
[IL87]. The extra cost of such schemes is not more than O(n) sequential time,
and O(1) parallel time. ‘

The use of the sequential time stamp system (STSS) involves placing tokens
on a graph of a complete tournament in which for any n — 1 nodes there is
a node that majorizes them. Each processor is assigned one such token whose
location in the tournament corresponds to a time-stamp given by the STSS to
that processor. The property of the STSS is that it gives a total order on token
positions if the actions of advancing tokens are done sequentially. Usually, as
the cage is here, when a token is advanced it is advanced to a position in which
it dominates, at the time of the advancement, all other token positions in the
tournament.

The use of STSS in our algorithm is complicated becauge processors can
either do advances in the STSS (sequentially, by the resetter) or adapt the time-
stamp of the processor that dominates all others (when taking the maximum
and putting it into their own round_number). This new operation of equating
the time-stamp to that of the maximum time-stamp has two sources of complica-
tions: (1) This operation may take place concurrently with other such operations,
and concurrently with a sequence of token advancement operations, and (2) the
equating operation is not atomic, first the processor reads all other time-gtamps,
and then in a later operation it writes the value it decided to equate to. That
is, concurrently with the sequential advancement of tokens in the tournament,
some processors might move their tokens to location which they have observed
another token in. In the following we extend the standard STSS to accommodate
the new equate operation.

The specification of the advance, and time-stamp comparison operations in
the extended STSS are the same as in the original STSS. The serial specification
of the additional equate operation is that it acquires a time-stamp equal to the
maximum time-stamp in the system., The equate and advance operations are
implemented as follows: To equate the most dominant time-stamp a processor
goes through two cycles of reading and writing. In the first cycle it reads the
sequence-numbers of all the processors and sgelects the mogt dominant one if

93

there is such a time-stamp, then it writes it as its tentative time-stamp. In the
second cycle it again reads the sequence-numbers of all the processors and double
check that the register it copied from, is still holding the same sequence-number
and it is still the most dominant. If it is, then the equating processor updates
its time-stamp to be valid (not tentative). If in the first cycle a processor finds
out that its own valid time-stamp is the maximum one, then it does not change
its time-stamp and does not go through the second cycle, it may assume its own
time-stamp to be valid. In case the processor did not see a majorizing time-stamp
in the first cycle, it failed to equate and returns without changing its time-stamp,
in this case it may return 1 and exit the test-and-set operation. To advance the
maximum time-stamp (i.e., to acquire a new time-stamp) (performed by the
resetter), a processor reads twice all the time-stamps (valid and tentative ones)
and selects a new time-stamp that dominates all of the ones it read, according
to the algorithm of [IL87]. When a processor reads a variable in the extended
read of the test-and-set operation, it compares its valid time-stamp only with
other valid time-stamps. One time-stamp is larger than the other if and only if it
majorizes it in the time-stamp tournament graph. A processor with a tentative
time-stamp ig regarded to have a lower time-stamp.

3 Complexity Analysis

We now analyze the time complexity of the algorithm. Each 2 process test-
and-set takes constant expected time. The outer algorithm requires once (at
the beginning) that a processor will read all the time-stamps. This takes O(n)
sequential time and O(1) parallel time. Similarly, in the single use algorithm
reading the state of the door requires O(n) sequential time and O(1) parallel
time. Finally, each level in the tournament requires O(2'*¢!) sequential time
and O(1) parallel time and there are logn levels. Thus the sequential time adds
up to O(n) and the parallel time adds up to O(log»). Similar calculation shows
that each test&set requires O(logn) coin flips.

4 Conclusion

This paper has presented: (1) A direct implementation of rardomized wait-free
test-and-set instead of an implementation in terms of repeated n process ran-
domized consensus; (2) A deterministic implementation of wait-free n-process
test-and set from wait-free 2-process test-and-set; (3) Introduced and argued
the notion of randomness and parallel time as new cost measures in wait-free
algorithms; and finally (4) Improved the complexity of existing constructions for
test-and-set [Her88, Plo88) in terms of the new resources, random bits, and par-
allel time, as well as in terms of the standard complexity measures of sequential
time and space.

Aside from the above, the paper raises the question of the randomized compu-
tational complexity (sequential time, parallel time, space, and number of coins)

94

of implementing concurrent objects with consensus number k from concurrent
objects with congensus number smaller than k.

Acknowledgments: We thank Michael Merritt and Michael Saks for helpful
comments on earlier drafts.

References

[Abr88] K. Abrahamson. On achieving consensus using a shared memory. In Prec. of
the Tth ACM Symp. on Principles of Distributed Computing, pages 291-302,
1988.

[ADS89] Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomial randomized
consensus., Extended Abstract, January 1989.

[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.
Journal of Algorithms, pages 281-294, September 1994.

[Asp90] J. Aspnes. Time and space efficient randomized consensus. In Proc. of the
Ninth ACM Symp. on Principles of Distributed Computing, pages 325-331,
August 1990.

[BR91] G. Bracha and O. Rachman. Randomized consensus in expected e{n®logn)
operations. In Proceedings of the 4th Internationel Workshop on Distributed
Algorithms, October 1991,

{Her88] M. P, Herlihy. Impossgibility and universality results for wait-free synchro-
nization. In Proc. of the Seventh ACM Symp. on Principles of Disiributed
Computing, pages 291-302, 1988.

[Her91] M. P. Herlihy. Randomized wait-free concurrent objects. In Proc. of the Tenth
ACM Symyp. on Principles of Distributed Computing, pages 11-22, 1991.

[IL87) A, Israeli and M. Li. Bounded time stamps. In Proc. of the 28th IEEE Annual
Symp. on Foundation of Computer Science, pages 362-371, October 1987,

[LAA8T] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement
among unreliable asynchronous processes, Advances in Computing Research,
JAI Press, 4:163~183, 1987.

[Lam86] L. Lamport, On interprocess communication, parts i and i, Distributed Com-
puting, 1:77-101, 1986.

[LTV89] M. Li,J. Tromp, and P. M. B. Vitényi. How to construct concurrent wait-free
variables, Technical Report CS-8916, CWI, Amsterdam, April 1989, See also:
pp. 488-505 in: Proc. International Colloguium on Automate, Languages, and
Programming, Lecture Notes in Computer Science, Vol, 372, Springer Verlag,
1989.

[PF77] G. L, Peterson and M. J. Fischer. Economical solutions for the critical section
problem in a distributed system. In Proc. 9th ACM Symp. on Theory of
Computing, pages 91-97, 1977.

[Plo88] S. A, Plotkin, Chapter {: Sticky Bits and Universality of Consensus. PhD
thesis, M.I.T., August 1988.

[SSW90] M. Saks, N. Shavit, and H. Woll. Optimal time randomized consensus — mak-
ing resilient algorithms fast in practice. In Proc. of SODA 90, December 1990.

[TV90] J. Tromp and P. M.B. Vitdnyi. Randomized wait-free test-and-set.
Manuscript, November 1990,

A Concurrent Tlme-Stamp Scheme Whlch is
Linear in Time and Space

Amos Israelil* and Meir Pinhasov?

! Dept. of Electrical Engineering, Technion, Israel
2 Dept. of Computer Science, Technion, Israel

Absatract. A concurrent lime-stamp scheme is an abstraction which en-
ables the representation of temporal relationship among the objects of &
distributed system. In this abstraction the system objects are labeled by
a process called labeling. Using these labels a scanning process can return
a set of labeled objects ordered temporally. In this paper we present a
time-stamp system with linear time and space complexity, To achieve
this complexity we introduce two way communication between labelers
and scanners.

1 Introduction

A Time-stamp scheme is an abstraction which enables the representation of
temporal relations among system objects. This is done by labeling the system’s
objects using labels called time-stamps. A time-stamp scheme consists of a set
of labels, a labeling protocol and a scanning protocol. The labeling protocol
uses labels of existing objects to choose new labels for newly created objects,
the scanning protocol scans the labels of existing objects and returns a set of
the labeled objects ordered temporally. In a distributed system each of these
protocols might be executed by many processes. A process executing the labeling
{(scanning) protocol is called labeler (scanner). In some systems a process may
function sometimes as a labeler and sometimes as a scanner but for the sake of
simplicity we choose to separate these activities,

If many labelers and scanners can run concurrently and if the labeling and
scanning protocols are waii-free, as defined by [8], then the time-stamp scheme
is called concurrent. The most common concurrent time-stamp scheme is the
natural time-stamp scheme which uses the natural numbers as labels. The la-
beling protocol consists of reading the labels of all existing objects and taking
the maximum label plus 1 as the label for the new object. When several copies
of the labeling protocol are executed concurrently the chosen labels may not be
distinct. To break these ties the name of the process which executes the labeling
protocol is added to the chosen label. The scanning protocol in the natural time-
stamp scheme is simply to read all labels of existing objects and order them in
the natural order. Ties are resolved by using the process’ names in lexicographic

* Partially supported by Technion VPR Funds - Japan TS Research Fund and B. &
G. Greenberg Research Fund (Ottawa).

96

order. This time-stamp scheme is used in a slew of distributed algorithms such
as [2, 6, 8, 14].

In many theoretical applications one seecks for bounded protocols, protocols
which use communication of bounded size. In this case the natural time-stamp
scheme is not useful any more. A bounded time-stamp scheme is a time-stamp
scheme with a finite set of labels. Such a scheme should reflect the temporal
order among all existing objects, therefore the number of objects which may
exist concurrently is bounded too, This number is the order of the time-stamp
scheme. In a distributed system, that uses single-writer atomic registers as its
communication primitive, both objects and labels are stored in atomic regis-
ters. The complexity of an implementation of a bounded concurrent time-stamp
scheme in such a system is measured by two criteria. The space criterion is the
maximal size of an atomic register owned by some process and used to control
the scheme’s operation. This measure is called label size. The time criterion is
the number of atomic read and write operations to shared registers for executing
each of the labeling and the scanning protocols. This measure is called ezecution
time,

The definition of a time-stamp scheme as a separate abstraction was first
suggested by Israeli and Li in [7]. There they give the basic definitions for time-
stamp schemes and suggest the use of the nodes of a precedence graph as the
label set. Using the precedence graph method they present lower and upper
bounds for bounded time-stamp schemes. First they derive an £2(w) lower bound
on the label size for a time-stamp scheme of order w. Then they present a
sequential® time-stamp scheme of order w whose label-size is O(w). For this
purpose they suggest the method of digraph maultiplication. Israeli and Li also
present a concurrent wait-free labeling protocol for a system of processes which
communicate through the use of atomic single-writer-multi-reader registers. This
protocol captures only some of the temporal relations in the system.

Following [7], Dolev and Shavit in [3] give the precise definition for concur-
rent time-stamp scheme, as used in this paper, and present a bounded concur-
rent {ime-stamp scheme. The label set for this time-stamp scheme consists of
the nodes of a precedence graph which is obtained by an operation which is a
slight modification of digraph multiplication. Let w and r stand for the number
of labelers and scanners, respectively, in the system. In the scheme of [3] the
processes communicate by using single-writer-n-reader atomic registers, where
n = w-r is the total number of system’s processes, the label size in this scheme
is O(w). Each execution of the labeling protocol takes O(w) operations and each
execution of the scanning protocol takes O(w? log w). A nice property of their
protocol is that communication is one-sided. Scanners do not write, they only
read values written by the labelers.

In this work we present a new time-stamp scheme whose execution time is
linear in n, the total number of processes in the system. The label-size of the
scheme is O(r - n) if single-writer-n-reader registers are used for communication

® In a sequential time-stamp scheme it is assumed that both the labeling and the
scanning protocols are executed atomically

97

However, we show that if one assumes that single-wiiter-n-reader registers are
built from single-writer-single-reader registers then the space complexity of our
scheme is (asymptotically) the same as the space complexity of a scheme that
uses single-writer-n-reader registers of linear size (and there is no additional
time complexity). To get this improved time complexity we introduce two-way
communication between scanners and labelers, The time complexity of the new
implementation is smaller than the time complexity of the [3] implementation

as long as w > O(, /27) -

To prove the correctness of the new implementation we use the interleaving
model. In this model it is assumed that every system execution is equivalent to
some serial system execution. A. protocol is considered correct with respect to
some set of specifications if every serial execution of the protocol satisfies these
specifications. This extended abstract contains a full description of the time-
stamp scheme and some important theorems which should serve as guidelines
for the correctness proof. A full correctness proof appears in [12] and will be
given in the full paper which is under preparation.

Independently and slightly later than our zesult, a linear-time concurrent .
bounded time-stamp scheme was presented by Dwork and Waarts in [4]. This
result based on a completely different approach yields an amoriized linear time
using single-writer-n-reader atomic registers of size O(nlogn). Recently, a new
technique developed by Dwork, Herlihy, Plotkin and Waarts in [5], enables them
to modify the scheme of [3] to be linear in both time and label size. However, since
this modification uses the Traceable Use abstraction of [4] its time complexity
is amortized.

The rest of this paper is organized as follows: Section 2 containe a formal
definition of a time-stamp scheme, Section 3 contains a description of a new
time-stamp scheme which we call the basic-scheme. In Section 4 we present the
linear time-stamp scheme, which is based on the basic scheme, and analyze its
complexity. Concluding remarks are brought in Section 5.

2 Definitions

The system consists of n processes of two kinds — labelers and scanners. A
process, i, whether it is a labeler or a scanner, owns an atomic single-writer-
multi-reader register, r;, written only by i and read by all other processes in the
system. A register, r;, is logically partitioned into several fields. The partition of
a register owned by a scanner may be different from the partition of a register
owned by a labeler. However, an active label field, #; exists in the register of
every process, i

The only atomic operations in the system are: A read operation from some
register, and a write operation to some register. The execution of an atomic
operation is called atomic action. A protocol is an operation composed of a
finite number of atomic operations executed one after the other. The execution
of a protocol is called acition. A non-atomic action begins by executing its first
atomic action, it ends by executing its last atomic action.

98

‘The scheme consists of two protocols — a labeling protocol, executed by la-
belers, and a scanning protocol, executed by scanners. Therefore, an execution
of a labeler, =, is a sequence: joty , Lg?], ... of labeling actions, and an execution
of a scanner, p, is a sequence: Sy} ' .S'r',[,2 i y ... of scanning actions (the processes
do not necessarily know the superscripts, they are only used for notation). A
labeling action, L%, accepts an object (denoted v[:]) to be written to z’s regis-
ter. It reads the aclive label fields of all the processes in the system, and based
on the this information a label, ZL“], is associated with the given object, Then,
both the object and the label are written to 2’s register by a single atomic write
action. The labels written by labeling actions help to establish a total order on
the labeling actions, which is consistent with their temporal order. A scanning
action, S,[,d], returns an ordered set, ¥ of labeled-objects (i.e. (object,label) pairs),
one per each labeler in the system. Intuitively, the order on the elements of 5
should reflect the temporal order of the labeling actions that wrote these ele-
ments. If the executions of all the processes in the system satisfy the following
properties, equivalent to those given by Dolev and Shavit in [3), then the scheme
is a concurreni-time-stamp-scheme.

P1 ordering: There exists an irreflexive total order, =, on the set of all labeling
actions, such that:

a. precedence: For any pair of labeling actions, i and LL"] (where possibly
z = y), if LI ends before LY begins, then LI = ¥

b. consistency: For any scanning action, S,[,d], returning the ordered set 7,
(o5, &) is before (off), 47) in 9, if and only if LI = LI,

P2 regularity: For any pair (0.[,“], t{,“]) in the ordered set ¥ returned by S,E,d], i
begins before S,[,'i] ends, and no labeling action of #, later than LL"], ends
before Sﬁ,'ﬂ begins.

P3 monotonicity: For any pair of scanning actions, .s*};’l and S,[,“], returning the

. ordered sets ¥ and @ respectively, If S,[,d] ends before S,E’] begins, (vE,“l, eE;‘]) ET
and (vg’],lLb]) € ii, then it can not be that b < 4. :

Note that scanners do not necessarily know the order in terms of => between
every pair of labeled objects they read. Yet they should be able to choose from
all the labeled objects they read a set of w labeled objects (one for each labeler)
on which they do know the order =.

3 The Basic Time-Stamp Scheme

3.1 The Set of Labels

Asin [7, 3] the labels are the nodes of a bounded precedence-graph, A precedence-
graph is a partial tournament, used to establish an irreflexive and anti-symmetric
relation on the set of labels. In order to define the precedence-graph we use the
a-composition operaior defined by [3]. Let G and H be two tournaments, and

99

let a be a subset of the nodes of G, The a-composition of G and H, Go, H, is
the tournament received by the following operation:

Replace every node v € « by a copy of H, denoted H, (if v ¢ a then
Hy = {v}). If there is a directed edge from v to u in G, then there is a
directed edge from every node of H, to every node of H, in G o, H.

Let D > 3 be a constant integer called the groph-constant. Based on
this graph-constant, define T? to be the following tournament over the nodes
{1...2D + 3}: Nodes 3...2D + 3 form a directed cycle such that for every 1,
3 < i< 2D + 3, there is an edge directed from i to ¢ — 1, and there is an edge
directed from 3 to 2D + 3. From every node in this cycle there is a directed
edge to nodes {1, 2}, and there is a directed edge from 2 to 1. Define the tour-
nament T* inductively as follows: Let T'! be a single node, and for every k > 1,
T* = T2 o, T*~1, where a is the set of all the nodes of a T?-subgraph except
from node 2.

In both time-stamp schemes, introduced in this paper, we use the tournament
T™ as the set of labels (remember that n is the total number of processes in the
system). Every node of T™ represents a possible label. A label is therefore a
string, £;[n..1], over the alphabet {1...2D + 3}. The prefix, £;{n..k], of a label
specifies the T®-subgraph in which the node corresponding to this label resides.
Since all labels come from the same T™ graph, £;[n] = 1, for all the labels.
A supernode, i, of a T*-subgraph is the T*~1l-subgraph that replaces node i
of T2, in the comstruction of this T*-subgraph (it is a simple node if i = 2).
Any T*-subgraph has a C*-cycle, which is the cycle composed of supernodes
{3...2D + 3} of that T*-subgraph. In the sequel we use the term component in
order to refer to either a T*-subgraph or a C¥-cycle. The only difference between
the family of precedence-graphs we and the precedence-graph of [3] is the larger
size of the C*-cycles in our precedence graphs, This difference however, is vital
for the correctness of the schemes we introduce.

Since cur precedence-graph is not a complete tournameni we cannot use the
simple dominance relation which was used in [7, 3}. Instead we generalize it to be
the following irreflexive anti-symmetric dominance relation on the set of labels.
A label £; dominates a label £;, (denoted £; < £), if there exists a directed path
in T™, of length greater than 0 but less than or equal to D, from the £; to £;. The
dominance relation can be also be applied to components, using the following
generalization: A component o dominates a component 3 if there exists a proper
directed path in T, of length less than or equal to D, from every node of o to
every node of 3.

3.2 The Basic Labeling Protocol

The basic labeling protocol and the labeling function introduced in this subsec-
tion are slightly modified variants of the labeling protocol and labeling function
given in [3].

The basic labeling protocol (see Fig. 1) performed by process i, reads the
contents of all the registers in the system in arbitrary order, this sequence of n

102

to break symmetry between labels owned by distinct processes. It is important to
note that IH3 implies that all active labels at any time ¢ are totally ordered by
the ¢ relation. Let ¢ be a moment in time. Denote by BY the set of active labels

at time i. For every integer m, denote BI® to be B*~1 U {tL“] : A2 e B;"“l}.

That is, if 852'] € B* then either zL‘l is the active label of 2 at time ¢, or, 85;"] is
written by one of the first m basic labeling actions of @ that end after £, The
changes in time made to the active label of a certain process can be viewed
at as a “movement” of this process. From IH3 and from the labeling function,
it can be shown that by completing a single basic labeling action a process can
“move” at most 2 edges on the graph (the “movement” is always against the edge
direction). Therefore, the assertion made on the labels in B can be generalized
for m’s that are small relative to the graph-constant, D). This generalization
appears in the following lemma.

Lemma8, Lett be a moment in time and let m be some integer, If m < %

then every subsel of BP*, that contains labels of distinct processes, is tolally
ordered by the ¢ relation,

We now define a total order ,=>, on all basic labeling actions executed during
some system execution, as it was defined in [3]:

Definition4. A basic labeling action, Ag’l, is observed by another basic labeling
action, AL, if either 89’] is read during A[,,“], or there exists some basic labeling
action AL, such that £ is read during Al and AL”] is observed by Al

Definition5. Let A% and AY be basic labeling actions. A} = AL if either
APV 224 A8 or, APV ALY and A9 < 471,

Theorem 8. The relation => is an irreflezive totel order on the set of all labeling
actions.

Let ¢ be some moment in time. As explained above, if m < %, then no
process succeeds to complete a whole cycle (actually not even half of a cycle)
of the precedence graph within m basic labeling actions. This implies that the
total order induced on the labels in BJ® is consistent with the order = on the
basic labeling actions that wrote these labels. This claim is formalized by the
following lemma:

Lemma ¥, Lett be a moment in time, Let 8[: ! and e{,"] , ¥ # =, be labels from
B™ where m < 2;—1 If zL"l < A4 then Ag,b] = Ald,

3.4 The Basic Scanning Protocol

In this subsection we describe the basic scanning protocol which appears in
Fig. 3. In spite of its simplicity this scanning protocol is more efficient than

103

the scanning protocol of [3], unless w > r. The set of labels of the scheme for
n = w + » processes is the set of nodes of T, with the graph constant D = 3.
The labeling protocol of this scheme is the basic labeling protocol. The scanning
protocol is described below. Unlike the scanning protocol of [3], this scanning
protocolis not a read only protocol. We found that allowing the scanning protocol
to write into shared registers, reduces the number of atomic operations needed
for a scanning,

Remember that the purpose of the scanning protocol is to find w labeled-
values, one per each labeler, such that the order in terms of = among the (basic)
labeling actions that wrote them can be determined by the scanner. In the sequel
we, for sake of simplicity we refer to a labeled-value only by its label.

The scanning protocol works in phases. In each phase it extracts a non-empiy
set of labels that belong to distinct labelers for which no label was found in the
previous phases, All labels extracted in a certain phase are “older” in terms of
=> than all the labels returned in later phases.

procedure scanning(j);
begin
1: fwnal := ¢
rem = Labelers;
2 old « collect;
while (rem # ¢) de
begin
L — L(old, 5%
new — collect;
dominated ;= dominated_set(new,rem, £;);
if dominated = ¢ then dominated := arb{old, rem);
arrange(dominated, final);
rem :=rem \ {j /t&"’l € dominated);
old := new
end ;
8: £ — L(old, j);
return{final)
end ;

ege

Fig. 3. The Basic Scanning Protocol (for scanner j)

In each phase the labels of all processes are read and the active label of the
scanner is moved to “cover” all the read labels (these actions in lines 2 and
3, amount to performing a basic labeling action). Then the labels of labelers
for which no label was found so far are read once again (line 4). Let Z be the
set of labels read in the second sequence of reads. There are two posmble cases
concerning the labels in 7. The first case is that some of the labels in # are
found still covered by the scanner’s active label. In this case we prove that all
the covered labels in £ are in B}, where ¢ is the moment immediately after the
scanner’s active label was written, This according to lemmas 3 and 7, implies

104

that the order in terms of => among the labeling actions that wrote the covered
labels can be deduced from the order induced on these labels by the < relation.
The second case is that all the labels in Z dominate the scanner’s active label.
In this case we deduce that all the labelers for which no label was found yet,
made at least one move since their label was read in the first sequence of reads.
Therefore, the scanner can arbitrarily pick any label read in the first sequence
of reads (that belongs to a labeler for which no label was found yet). In this
case the scanner cannot return more than one label in this phase since there is
no way for the scanner to determine the relations (in terms of =») among the
labeling actions that wrote the labels collected in the first sequence of reads.

This technique yields (in the worst case} a w-phase scanning protocol. Since
every phase consists of O(n) atomic operations, the overall time complexity is
O(w - n).

4 The Linear Time-Stamp Scheme

In this section we introduce, for the first time, a bounded concurrent time-stamp
scheme whose scanning protocol has linear time complexity in the number of pro-
cesses. The labeling protocol of this linear scheme is based on the basic labeling
protocol, and its time complexity remains O(n). The shated memory require-
ments of the linear scheme are as follows: every labeler owns an atomic 1I-W-n-R
register of O(n - r) bits, and every scanner owns an atomic 1-W-n-R register of
O(n) bits. Thus, the length of 1-W-n-R registers, used by labelers in the linear
scheme, is greater than the length of 1-W-n-R registers, used by labelers in the
basic scheme. However, in subsection 4.4, we show that if the communication
registers in the system are assumed to be 1-W-1-R atomic registers, (zather than
1-W-n-R atomic registers), then the total length of primitive registers owned by

every labeler in the linear scheme is (asymptotically) the same as in basic scheme,
' The task of the scanning protocol is to find w labels, one per each labeler,
such that the order in terms of = among the labeling actions that wrote thee
labels can be detexmined by the scanner. By lemmas 3 and 7, it follows that the
scanners’ task can be reduced to:

Task A: The scanning protocol should find a set § of w labels, one for each
labeler, such that there exists a moment, t, during the scanning action, and
there is a constant m, for which: & C B,

A protocol that accomplishes this task, can be converted to a scanning pro-
tocol simply by returning the labels of S ordered by the < relation. The graph-
constant I} in for a scheme composed of such a protocol should be chosen to -
satisfy: m < %.

Actually, every phase of the basic scanning protocol attempts to accomplish
task A. All the labels returned by a single phase are from Bl, where t is the
moment right after the scanner’s write action executed in this phase. Unfortu-
nately, it is not guaranteed that a single phase succeeds to accomplish task A,
since we saw that in the worst case the set of labels found in a single phase may

105

contain a single label {instead of w). The main obstacle in accomplishing task
A in a single phase, is that no matter how large m is, there may still exist a
labeler that completes more than m basic labeling actions after moment ¢, and
before its register is read by the second sequence of reads of this phase.

One possible way to accomplish task A is as follows: A labeler # that finds
out that it had completed m basic labeling actions after a specific moment ¢
during the scanning action S,[f], and before its label is read by SB’]. suspends
any further labeling actions until its label is read by SI), This assures that the
label read by S,[,‘] for every labeler is in B]". However, this solution leads to a
non wait-free labeling protocol, and therefore cannot be a part of a concurrent
time-stamp scheme. The waiting of labelers in the scenario described above can
avoided if the each labeler that wishes to proceed executing additional labeling
actions keeps a historic label of itself for the stalled scanner. This way the stalled
scanner is provided a label from B*, even though the labeler’s active label when
its register is read by the scanner is a much later one.

In our specific implementation of the above solution t is the moment right
after the write action performed during a scanning action, and m == 2. The

latter implies the graph constant D should be greater than or equal to 5, so that
m< 21
-— 2 .

4.1 Register Structure

In order to implement the above ideas, labelers and scanners should write addi-
tional information to their shared registers. The exact partition of labelers’ and
scanners’ registers are depicted in Fig. 4. Both labelers and scanners siill have
an active label field denoted £. In the scanners’ registers this field is accompanied
by an alternating tog bis. This bit assures that no two consecutive active labels
of a certain scanner are equal.

The registers

of labeler i
o 0 ° 1 1 1
Ur| |Ga] === |9 G| | D] = | %
The register } ol al ol s " el s
of scanner j tog PP Py | Py P_ P,

Fig. 4. Register Structure

106

The h; fields in the register of labeler i are used to store a historic labels of
for every scanner j. The &; fields, on the other hand, are used to notify scanner
J of the latest label (and its tog bit) of j that was read by labeler i, We later
explain why these fields are needed.

Finally, the shared 1-W-1-R atomic bits q?j, b € {0,1} of the labelers, and the
p} fields of the scanners’ registers are used for the Hand-shake bits mechanism
of [1]. This mechanism allows a labeler i to detect whether any write action was
made by a scanner between every two consecutive collect actions. .

4.2 The Labeling Protocol

The labeling protocol of the linear scheme is presented in Fig. 5. The protocol is
based on the basic labeling protocol {lines 5,6 and 10 constitute a basic labeling
action). Since every labeling action contains exactly one basic labeling action,
we refer to the basic labeling action enclosed in LI} as A%). Another important
activiiy of the protocol is to keep a historic label of itself for every scanner. The
historic label stored by labeler i for scanner j is updated by labeling action 29
iff the scanner j made a write action after its label was read by A[" 1] and before
its label is read by A,,, (line 8). The write actions of every scanners are monitored
using the Hand-shake bits mechanism (lines 3 and 7). The labeler also “echoes”
the label (and tog bit) read for every scanner (line 8). This information is written
to the #; fields. The use of this information by the scanners is elaborated in the
following subsection.

procedure labeling(s, obj) ;

begin

1: bi==d;

2: tmp « collect ;

3 foreach scanner j do q,!’,- — pi(tmp;) ;
4z old := new ;

B: new + collect ;

6: L= L(labela(new), i)
foreach scanner j do begin

T2 if {p:“‘(old,) =p;*(new;) = ;i and tog(old;) = tog(new;)}
then /* Do nothing! */
8: else Aist; :=4; ;
9: slab; = {{(new;), tog{new;)) ;
end ;
10: ri « {obj, L;, hist, slab) ;
end ;

Fig. 5. The Linear Labeling Protocol (for labeler)

107

4.3 The Scanning Protocol

The scanning protocol, presented in Fig. 6 is similar to a single step of the basic
scanning protocol given above, except it always finds w labels. In lines 3-5 of
the protocol a basic labeling action is performed. Then the all the registers of
labelers are read once again (line 6). In this second collect an active label and
a historic label is read for every labeler. To accomplish task A, the scanning
protocol should be able to choose correctly between the active and historic labels
of every labeler. Note that the scanner cannot always choose the historic label,
sinee this historic label could have been kept for an earlier scanning action after
which the scanner has started an additional scanning action. In this case the
historic label stored for this scanner is too old and therefore irrelevant. For this
purpose the labeler echoes the most recent label it read for every scanner in
s; fields. The scanner compares the label in s; field to its active label. If these
labels are not-equal then the historic label is not chosen (lines 7-9).

function scanning(s) ;

begin

1: foreach labeler ¢ do begin

b .9 Aand "Q?,' H

Y
end ;
toggle; 1= —toggle; ;
Jirat « colleet ;
£; 1= L(labels(firat), 7) ;
r; — (&, toggle;, f*, '} ;
second — collect ;
foreach labeler 1 do

-

Sopwy

T I {{; < Y recond;) and s;(second;) = {£;,loggle;}}
8: then g; := hj(second;) ;

9 else g; 1= M second;) ;

10: return{arrange(j));

end ;

Fig. 6. The Linear Scanning Protocol (for scanner §)

Theorem 8. Let S},’] be a scanning action, and lel t be the moment right after
the write action made during S,[,’]. All the labels returned by S,[,’] belong to B},

This theorem together with lemmas 3 and 7 implies the correctness of the scan-
ning protocol.

108

4.4 Space Complexity

The labelers’ 1-W-n-R atomic registers are of length O{r-r) {since every historic
label field is of O(n) bits). However the fields h; and s; of labeler i is read only
by scanner j. Thus the total length of all the information stored by labeler i for
scanner j is of length O(n). This observation motivates the following definition:
Let v;, be n values to be distributed to processes P; 1 < i < n, where v; is given
to P;. The atomic distribution operation is the operation in which the values v;
are distributed atomically, i.e. as if all values are distributed in the same time. A
trivial implementation of atomic distribution is to use a an atomic 1-W-n-R reg-
ister in which process P writes the v;-s. This yields a space complexity of 3, |l
where |v;| denotes the length of ;. If communication in the system is handled by
1-W-1-R registers, (rather than by 1-W-n-R registers} then atomic distribution
can be done in space complexity max |v;|. As a result the linear scheme can be
implemented in linear space complexity. The more efficient implementation of
atomic distribution is done by assuming that initially communication is done
using an implementation of a 1-W-n-R atomic register by atomic 1-W-1-R reg-
isters. In addition we assume that the implementing protocols do not depend
on the values written in the register, e.g. the implementation of [11]. To imple-
ment atomic distribution we modify the write protocol in the implementation as
follows:

Instead of writing the same value, v, to the n 1-W-1-R registers owned
by the writer {of the 1-W-1-R register), a different value v; is written to
every register read by reader i.

This change of the writer’s protocol, allows the labeler, when writing to
its 1-W-n-R register, to “write” distinct values for distinct scanners, without
harming the atomicity of this write. The total amount of 1-W-1-R registers
needed to implement this is the same as the amount of 1-W-1-R registers needed
to implement a 1-W-n-R register of length O(n).

5 Concluding Remarks

We presented a new bounded time-stamp scheme whose time and space com-
plexity is linear in n, the total number of processes in the system. Our, previous
and recent results concerning titne-stamp schemes are summed up in Table 1,
columns appear in chronological order. Future work should try to reduce the
complexity to depend only on the number of labelers in the system as well as to
try to improve the complexity of schemes in which communication is only one-
sided. Another interesting direction is to explore the possibility of implementing
bounded schemes directly from 1-W-1-R atomic registers.

109

Table 1. Efficiency comparison among time-stamps schemes

[[3] [basic acheme|linear scheme| [4] [5]

labeling time O(w) O(n) O(n) O(n) [O(n)
scanning time [O(w*log w)| O{w:n) O(n) O(n) |0(n)
register length| O{w) O(n) O(r-n) [O{nlogn)|O(n)

(O(n))
scanners write v W v v

References

1.

11.

12.

13.

14,

Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., Shavit N.: Atomic snapshota of
shared memory. Proc. 9th ACM Symp. on Principles of Distributed Computation
(1990) pp. 1-13.

. Chor B., Israeli A., Li M.: On processor coordination using asynchronous hardware.

Proc. 6th ACM Symp. on Principles of Distributed Computation (1987) pp. 86-57.

. Dolev D., Shavit N.: Bounded concurrent time-stamp systems are comstructible!

Proc. 21st Annual ACM Symp. on Theory of Computing (1989) pp. 454-466.

. Dwork C., Waarts O.: Simple efficient bounded concurrent timestamping or

Bounded concurrent timestamp systems are comprehensible! Proc. 24th Annual
ACM Symp. on Theory of Computing (1992) pp. 8565-666.

. Dwork C., Herlihy M., Plotkin 8.A., Waarts O.: Time-lapse snapshots. Proc. of the

Isracli Symposium on the Theory of Computing and Systeme (1992) pp. 154-170.

. Herlihy M.P.: Waitfree implementations of concurrent objects. Proc. Tth ACM

Symp. on Principles of Distributed Computation (1983) pp. 276-290.
Israeli A., Li M.: Bounded time-stamps. Proceedings of the 28th Annual Sympo-
sium on Foundations of Computer Science (1987) pp. 371-382,

. Lamport L.: A new solution of Dijkstra’s concurrent programming problem. CACM

17, 8 (1974) pp.453-455.
Lamport L.; The mutual exclusion problem. J. ACM 33, 2 (1986) pp.313-348.

. Lamport L.: On interprocess communication, Distributed Computing 1, 2 (1986)

pp. TT-101.

Li M., Tromp J., Vitanyi P.M.B.: How to share concurrent wait-free variables.
preprint.

Pinhasov M.: A Linear-time bounded concurrent time-stamp scheme. M.S¢. thesis,
Dept. of Computer Science, Technion, Haifa, Israel, (1991). (in Hebrew)

Singh A.K., Anderson J.H., Gouda M.G.: The elusive atomic register revisited.
Proc. 6th ACM Symp. on Principles of Distributed Computation (1987) pp. 206-
221.

Vitanyi P., Awerbuch B.: Atomic shared register access by asynchronous hardware.
Proceedings of the 27th Annual Symposium on Foundations of Computer Science
(1986) pp.233-243.

* This complexity analysis is explained in subsection 4.4

Tentative and Definite Distributed
Computations:
An Optimistic Approach to Network
Synchronization

J. Garofalakis!, S. Rajsbaum?® ,P. Spirakis! and B. Tampakas!

! Computer Technology Institute and
Computer Science and Engineering Department
Patras University - Greece
? Instituto de Mateméticas
U.N.AM. - Mexico

Abstract. We present here a general and efficient strategy for simu-
lating a synchronous network by a network of limited asynchrony. Our
proposed synchronizer is optimistic in the sense that it uses very efficient
but tentative protocols to simulate a contiguons block of synchronous
steps. However, since a tentative execution does not guarantee correct
simulation, we audit the computation at selected points. The audits are
used to check whether the computation of the block can be certified to
be correct. We show that a wide class of networks of limited asynchrony
admits practical tentative protocols which are highly likely to produce a
correct simulation of one step with very small overhead. For those net-
works, the synchronizer exhibits a trade-off between its communication
and time complexities which is below the lower bounds for deterministic
synchronizers. On one extreme the amortized complexity of our synchro-
nizer is O(1) messages and O(logn) time (expected) per “step” of the
simulated synchronous protocol. On the other extreme the communi-
cation complexity is O(e/A?) and the time complexity is O(logA), for
networks with e edges and maximum degree A.

1 Introduction.

1.1 The Need for Synchronizers.

Consider a network of n processors and maximum degree A. The processors
communicate by sending messages along e communication channels (edges). As-
sume that a program has been written for a synchronous network operation: On
a global start-up signal, all processors start computing simultaneously. On every
beat of the global clock each processor, according to its program, performs one
computational step and sends messages to some of its neighbours. The trans-
mission delay in the communication channels guarantees here that all messages
arrive at their destinations in time to be used in the next computational step.
We do not care about the exact nature and purpose of the program and we
assume that processors and channels are reliable.

i

If one wants to run the same program on an esynchronous network of the
same topology, where no global start-up signal exists and where transmission
delays are unpredictable, then certain measures have to be taken to keep the
computation correct. The use of synchronizers was suggested by Awerbuch [A,85]
in order to simulate synchronous networks by asynchronous ones.

1.2 Complexity Measures.

The communication complexity of a synchronous algorithm =, C(7), is the worst-
case number of messages sent during the run of the algorithm. The time com-
plezity of a synchronous algorithm «, 7(r), is the number of beats generated
during the run of the algorithm, In our paper, for an asynchroncus algorithm,
the communication complexity is the worst case (among all possible starting
time paterns) ezpected number of messages sent during a run, and the time com-
plexity is the expected time of execution of a run. The expectation is taken with
respect to a class of distributions of the transmission delays.

We are interested in studying what are the complexities of executing a syn-
chronous program 7 on an asynchronous network of limited asynchrony. Namely,
the complexities of a synchronizer § in our paper, are as follows: The time com-
plexity is the worst case (among all synchronous programs w} expected duration
of the execution of a (synchronocus) step of 7 by the synchronizer §. The mes-
sage complexity of § is the expected message overhead per step added by the
synchronizer.

1.3 Previous Work.

For networks of unlimited asynchrony, Awerbuch presented synchronizers whose
communication - time tradeofl is proved to be within a constant factor of the
lower bound. The problem of designing efficient synchronizers has been studied
in the past ([AP,90], [PU,89]). Even and Rajsbaum examined the performance
of synchronizer - controlled networks which have a global clock but no global
start-up signal and whose transmission delays are either negligible ([ER,88]) or
fixed ([FR,90]}). The results were generalized to other protocols by Malka and
Rajsbaum. The performance of the synchronizer of [ER,88] and [ER,90] under
random transmission delays and processing times was analyzed in [RS,20]. It
was shown that any synchronizer has time delay (average) per step of £2(log A).

Most of the above techniques provide per-step synchrenization: the execu-
tion of the next “synchronous” step {of the original ideal synchronous program)
begins only after the current “synchronous” step is guaranieed to have finished
correctly. In such synchronizers, a communication (number of messages per “syn-
chronous step” simulation) penalty of at least &(n) is paid where n is the number
of network nodes.

An exception to the above is the synchronizer alpha of [A,85). In that syn-
chronizer the network essentially runs free, locally delaying the computation only
as long “as necessary”. In particular, each processor waits for messages to ar-
rive from all its neighbours before it performs the next computation step (It is

112

assumed that every message is followed by an “end - of - message” marker, even
if the message is empty). A similar mechanism was used by Chandy and Lam-
port ([CL,85]) and the whole approach is also encountered in models of marked
graphs (sec e.g. [CHEP,71]).

1.4 Our Results.

To avoid the possibly long waits introduced by the simple synchronizer pre-
sented above, we propose that-each processor waits only for a certain amount
W of steps, hoping that all messages from neighbours will indeed arrive with
high likelihood. This optimistic approach provides tentative executions which
do not guarantee the corectness of the computation. Thus, we use a definite
synchronization scheme, only at certain selected points, to audit the network’s
computations. The definite protocol checks whether the whole sequence of many
tentative simulated steps can be certified to be correct. If not, the network’s
computation is relled back to the previous audit point, and we restart the com-
putation from there. A similar scheme was also employed in [KPRS,91] to provide
robust parallel computations on fanity PRAMs (Parallel Random Access Ma-
chines, see [Wy,81}). Our work shows how to apply such ideas to get efficient
synchronizers. For a wide class of networks we show our optimistic synchronizer
to get an amortized mean delay of O(Flogm) per “synchronous” step and an
amortized mean number of messages of O(e/m?) per “synchronous” step, for a
parameter m, A < m < n, and a constant 8 > 2 thus having a performance
which is better than the performance of all previously proposed synchronizers.
Moreover, by chosing m = A, for networks with e = O(A?), we obtain a syn-
chronizer with constant overhead in communication and time. Also by choosing
m = n we obtain a synchronizer with constant message complexity.

We assume (as in [ER,90]) that our networks have individual site clocks
which run at the same rafe but are not necessarily synchronized. Our networks
have transmission delays that are random variables “with memory” (less vari-
able than the exponential). Note that the assumptions about the distribution
of the transmission delays affect only the performance of our synchronizer. Its
correctness is guaranteed independently of those assumptions.

2 The Optimistic Synchronizer.

In the sequel, m is the protocol’s parameter, and o, 8, # are constants that will be
determined later., When we say « time units, we assume that they are measured
according to the processors’ clocks (anyone of them, since they all run at the
same rate). The synchronizer is similar to the synchronizer of [ER,88], [ER,90];
it has two operating modes. In the steady state mode a processor executes a step
of the synchronous algorithm by performing the following phase.

begin
- wait W = (o + 8) log m time units;

113

- read messages that arrived and originated from neighbours within the pre-
vious phase;
- compute, as the simulated synchronous algorithm requires;
- send messages to neighbours for the next phase, as the simulated algorithm
requires;
end

The phase is a tentative synchronization method. Note that in each phase,
each node just waits W time units and does not use any other messages than
messages of the algorithm to be simulated received so far. The messages have
ta be tagged by phase number. If a message of an older phase arrives (late) at a
node, then the node just sets an ERROR flag locally.

While a processor is in steady state mode it repeats the phase. After repeating
the phase k = m? times, the processor enters the audit mode, which has the goal
of backtracking the computation in case an error has occured in any of the phases
since the last audit mode, namely, during the current round.

Audit test: When a processor enters the audit mode, it first finds out if it
has executed any phase incorrectly during the current round. This test can be
performed as follows. If ERROR is set, then some step has been performed in-
correctly. Thus the processor starts the Restarting procedure described below.
If ERROR is not set, a mistake could have been performed only in case a late
message has not yet been received. To check this, each processor sends an END-
ROUND message to every neighbour, and waits for an END-ROUND message
from every peighbour. The message sent from u to v includes the number of
times u sent a message to v during the current round. When v has received an
END-ROUND message from every neighbour it knows if it has received all the
messages of the current round. If any of the messages did not arrive on time, v
sets its ERROR flag, and waits for any messages that have not arrived yet. This
concludes the Audit Test.

Restarting: Once the auditing test is completed, a processor reenters steady
state mode by invoking the following distributed restart algorithm (similar to
the initialization mechanism of [ER,88], [ER,90]). Two cases are possible.

(i) The ERROR flag is not set. The processor sends s START-ROUND mes-
sage to every neighbour and waits for a START-ROUND message from every
neighbour. Then the processor enters steady state mode. This interchange of
START-ROUND messages guarantees that neighboring processors enter steady
state mode more or less at the same time. If instead of receiving a START-
ROUND from a neighbour, the processor receives a RETRACT message, then
it sends a RETRACT message to every neighbour, rolls back the computation
to the previous round, unsets the ERROR and begins the Restart. Thus the
RETRACT messages propagate in the network via flood.

(ii) The ERROR. flag is set. The processor sends a RETRACT message to
every neighbour, rolls back the computation to the previous round, unsets the
ERROR and begins the Restart. Thus the RETRACT messages propagate in
the network via flood.

114

Note that if at least one processor sets it flag to error, then every processor
in the network rolls back the computation to the begining of the round. This
can be improved by appending to the RETRACT messages a counter with the
distance from the originator of the RETRACT: If a processor receives a message
with counter 2, it sends the messages with counter {1+ 1, and rolls back ¢ phases.
Hence a RETRACT propagates only a distance of k. Correcteness: if p has to
execute phase i again, then a neighbour has to execute ¢ + 1 again. We do not
consider further the improvement of the protocol in this version of the paper.

Observe that the difference between the times on which two neighbours reen-
ter steady state mode is bounded by the message delay of a START-ROUND
message.

3 Correctness and Complexity of the Optimistic
Synchronizer.

3.1 Outline.

From the synchronizer’s protocol it is clear that a round which has been incor-
rectly performed (because some message arrived too late) will be rolled back by
every processor. If the window W is big enough, then no too many errors will
occur, and a round will be eventually commited when the computations of all
nodes during the round were correctly done. Thus our synchronizer is correct (it
never cominits erroneous computations).

Intuitively, if at the beginning of each phase of a node the node and its
neighbours are ”approximately synchronized” then they will remain so, at the
end of the phase (with high probability, depending on a succesful selection of
W). The audit test (and the initialization phase) serve two purposes: To make
all nodes ” approximately synchronized” and to preserve the correctness of the
computation {by a definite protocol).

3.2 Complexity Analysis.

For the performance analysis we use the fact that the delays are random vari-
ables with memory, of mean at most 1/A (A a parameter). Intuitively, a random
variable is with memory if it is “new better than used” in expectation. Many
natural distributions belong to this class, such as normal, uniform, and expo-
nential. As we shall now see, the exponential is the one that produces the worst
performance of the synchronizer. Therefore, the complexity analysis will be done
assuming that the delays are exponentially distributed with mean 1/A.

Definition (See also [Ro,83]):
A random variable # is called a random variable with memory if

Ya>0 E(z-afe>a)< Ex)

(where E(z) is the expected value of).

115

Definition:

A random variable x is called less variable than a random variable y if, for all
increasing convex functions h,

E(h(x)) < E(h(y))-
We denote this by ¢ <, 7.

Fact 1 [Ro,83]:
Let # be a random variable with memory and y be an exponential random
variable of same mean. Then & <, y.

Fact 2 {Ro,83]:

If xy,22,...,%, are independent random variables and 1, s, . . ., ¥ are indepen-
dent random variables and z; <, g then g(z1,2g,...,2a) <o 9(¥1,Y2,.- ., ¥n)
for any increasing convex function g which is convex in each of its arguments,

Theorem 1
The probability of an error during a phase of a node is maximized when the

message delays are exponential random variebles, among all possible delay dis-
tributions with memory.

Proof sketch
An error happens when the maximum of the message delays from the neighbours
(plus the maz “slack” in initial neighbour synchronization) exceeds W. Since the
maz function (and the plus) are convex, by Facts 1 and 2, all moments are
maximized when the delays are exponential random variables.

|

Corollary 1

The exponential delays of messages provide the worst case performance of the
optimistic synchronizer, among all possible distributions of delays {(of the same
mean) which are random variables with memory.

Theorem 2

For each § > 2 and « > 0 there is a ¥ > 0 such that the following holds: Assume
that all the neighbours of a node v, and v itself, finish phase ¢ within a time
interval of o -logm (where o is a positive constant). Then, all the messages
that are sent to v at the end of phase 7 will be received within the window
W = (o + B)log m of phase i + 1 of v, with probability > 1 ~m~? | provided
that W is at least v -logm .

Proof
Let to be the instant at which the last phase ¢ of v’s neighbours finishes. In
the worst case all neighbours finish at ¢; their phase i (else they finish earlier).

Let Dy, Ds,..., Dy be the message delays of the messages that were sent to
v at the end of phase i.
Let D= mam{Dl, Dg, ey Dml} .

116

Clearly m’ is at most equal to the number of ¥’s neighbours, and hence
m! < A,

ml

Prob{D < &} = Prob{VD;, D; <z} = HProb{Di <z}

i=1

because of independence. Since in the worst case all D;’s are exponential, the
above probability (of small delay) is minimized when all D;’s are exponential.
Thus, Prob{D <z} > (1 — e~)™
(where X is the rate of the exponential).

If we want Prob{D < z} to be > 1 — m~# then it is enough to have

L)
1—(1—m-F)w

(1—e=22)y™ > 1_m=F = e~V < 1-(1-m~)= = &> ;ln(

But
1 .4 1 1
U-mp)™ 21- oo 2 1= o

(since m’ < m), Thus

1 .4 +1
1—(1—W)?’ < = >ﬂ logm

ST 23

Thus, if we pick a ¥ > o+ (8 + 1)/A then all the messages from the various
phases ¢ of v’s neighbours will indeed arrive at v during the window W = (o +
(8 + 1)/A)logm of v’s phase i 4 1, with probability > 1 —m~#?,

[}

Corollary 2

3 Bo >0 : VB> f, if all phases i finish correctly within an interval of O(log m)
time then all phases i+ 1 will finish correctly within an interval of O(log m) time
with probability at least 1 — m=#.

(Proof ommited).

In the sequel, let k =m? , 6 > 0.

Theorem 3 :

For each By > 3 and a0y > 0, 3y > 0 : If a round of the network starts in such
a way that all starting moments of neighbour nodes are in an interval of size
ap -logm (o > 0 a constant) then all nodes will finish the round correctly
with probability at least 1 — m=#1 | provided W = v - logm.

Proof
Let 8=+ 8. Choose vy > a; + (B+ 1)/ .
Let E; be the event “phase j of the round finishes correctly provided that all

117

nodes start it within an interval of oy -logm ”.
Then, if E = (=, £; , we wish to find the Prob{E}. But

¥)
Prob{E} = Prob{\/ E;} <> _ Prob{E;} <k-mP =m~ (=0 =m=h
i=1 i=1
Thus, Prob{E}>1-m=% .

Theorem 4

For each « > 0 38 > 0 : Each round of our synchronizer starts in such a
way that all starting moments of neighbour nodes are within an interval of size
o - logm (a > 0 is an appropriate constant) with probability at least 1 ~ m=# .

Proof
The starting time of the last of any set of neighbours to start is at most the
maximum of m exponential independent random variables of mean d = 1/\ .
The probability that this maximum can exceed o - log m is at most m~# for some
8 depending on «. (Proof as in Theoremn 2).
)
Theorems 3 and 4 show that;

Corollary 3

Each round terminates correctly with probability at least 1 —m~# and 3 can be
controlled by adjusting the window size W.

From Corollary 3 and from the fact that the mean value of a geometric
random variable Y of density-Prob{Y =i} = (1 —pY¥~'p is bounded above by
1/p, we get that:

Corollary 4

The mean number of unsuccesful repetitions of a round before commit, is bounded
above by 2.

Proof
Since a round fails with probability < n=? just put p =1 ~m~*#.

Thus we get our main result:

Theorem 5

The amortized (over a round) expected number of synchronizer messages (per
synchronous step of the simulated algorithm) is O(;55). The amortized (over a
round) expected delay of the synchronizer (per “synchronous” step of the simu-
lated algorithm) is O(Blogm), for a constant § and A < m < n.

Proof
Select a8 >0 (k=m’), for 8 = B — " and # > 3. The number (expected}

118

of messages of the synchronizer per round is at most 2¢ (¢ = number of
network edges), e for RETRACT messages and e for START-ROUND messages
by Corollary 4 and by the fact that no messages of the synchronizer are used in
phases. Thus the amortized number is 2¢/k = O(;%), for the constant .

The total delay per round is two times at most o« -k -log m (for the phases
of the round, where « is as in Theorem 4) with probability at least 1 —m=# |
plus the delay of the commit protocol. The mean delay of the commit protocol is
O(1/X}. Thus the total delay is (expected) O(klogm) and the amortized value
is O(log m).

: a

Note that the estimates of Theorem 5 can be shown to held with high proba-
bility (proof in the full paper), since by a theorem of [Ro,83] if {X;} is a sequence
of independent exponential random variables of mean A~! then for every positive
k' and e > 4log2 Prob{zf_i_l Xi > ckA™1} € exp(—ck/4).

4 An Adaptive Extension of the Protocol.

Our optimistic synchronizer presented so far has to know an appropriate win-
dow size W in order to work efficiently, since the multiplication constant of W
depends on the mean message delay. The mean message delay can be estimated
(and adjusted when the protocol starts domg a lot of restarted rounds) by the
following simple protocol:

Mean delay estimation protocol for node v.

1. For each neighbour w of v, v sends a “count delay” message, and stores the
sending time t{v,w). If v receives such a message, it sends it back to its
originator as soon as it receives it.

2. When v receives the count delay message back, 1t notes the receipt time
(according to v’s clock) #/(v, w). Let d(v,w) = t"('u w) — (v, w).

3. The above is repeated g times. Let d;(v, w) the estimate of each time. Then

di(v, w) + da{v, w) + - - + dy(v, w)
2¢9

d=

Lemma 1

If we choose a g > 1/e then with probability at least 1 —¢, |d — d| < 2 where
d 18 the mean message delay.

(Proof in full paper).

With the delay estimation protocol our synchronizer can be applied to net-
works where mean message delays vary with time, and where message delay
distributions are not the same in each neighbour (then one has to use the largest
estimated mean delay in the formula for W). (Details in full paper).

119
5 Future Work.

We are currently extending our optimistic synchronizer to work for networks
whose node clocks are not accurate but can be synchronized by another protocol.

Acknowledgments: P. Spirakis wishes to thank Z. Kedem and K. Palem for in-
sightful comments on rollback techniques. The anthors wish to thank the referees
of WDAG for their useful remarks.

References

[A,88] Awerbuch B., “Complezity of Network Synchronization”, JACM, Vel. 32,
No 4, Oct. 1985.

[AP,90] Awerbuch B., Peleg D., “Network Synchronization with Polylogarithmic
Overhead”, Proc. IEEE FOCS, 1990,

[CHEP,71] C Commoner F., Holt W., Even S., Pnueli A., “Marked Directed Graphs”, .
JC8S, Vol. 5, No 5, 1971,

[CL,85] Chandy K.M., Lamport L., “Distributed Snapshots: Determining Global
States of Distributed Systems”, ACM Trans. on Computer Systems, Vol.
3, No 1, 1985,

[ER,88] Even E., Rajsbaum 5., “Lack of Global Clock Does Not Slow Down the Com-
putation in Distributed Networks”, TR #3522, Dep. of Comp. Sc., Haifa,
Israel, Oct. 1988. The first part of this paper will appear with the title
“Unison in Distributed Networks” in Sequenses, Combinatorica, Compres-
sion, Security and Transmission, R.M. Capocelli (ed.), Springer-Verlag.

[ER,90] Even E., Rajsbaum S., “The use of a Synchronizer Yields Mazimum Rate
in Distributed Networks”, Proc. 22nd ACM STOC, 1990.

[KPRS,91] Kedem Z., Palem K., Raghunathan A., Spirakis P., “Combining Tenta-
tive and Definite Executions for Very Fast Dependable Parallel Computing”,
Proc. ACM STOC 1991.

[PU,89] Peleg D., Ullman J., “An Optimal Synchronizer for the Hypercube”, SIAM
J.Computing, Vol. 18, No 4, Aug, 1989, pp 740-747.

[Ro,83] Ross 8.M., “Stochastic Processes”, Wiley, 1983.

[RS,90] Rajsbaum S., Sidi M., “On the Average Performance of Synchronized Pro-
grams in Distributed Networks”, Proc, WDAG 1990.

[Wy,81] 1. C. Wyllie, “The Complezity of Parallel Computations”, PhD dissertation,
Comp. Sc. Department, Cornell University, Ithaca, New York, 1981.

Semisynchrony and Real Time
Extended abstract

Stephen Ponzio! and Ray Strong?

! MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA 02139,
ponzio@theory.lcs.mit.edu
? IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120-6099
strong@almaden. ibm.com

Abstract. This paper represents the confluence of several streams of
research on the real time complexity of distributed algorithms. The pri-
mary focus of our study is on two models and two problems: the timed
antomata model of Attiya and Lynch and the (“latency”) model of ap-
proximately synchronized clocks studied by Strong et. al., and the prob-
lems of consensus and atomic broadcast. We compare these models and
problems, producing new results and significant improvements of previ-
ously known bounds. In particular, we are able to significantly improve
the upper bound of Strong, Dolev, and Cristian on latency for Byzan-
tine failures, giving an algorithm that is much simpler with vastly easier
analysis, For this problem, we also improve the best known lower bound
on latency. We also provide certain reductions between problems and
models and provide preliminary answers to some new questions in the
timed automata model.

1 Introduction

In the interest of obtaining more accurate and useful time bounds for distributed
algorithms, there recently has been much attention devoted to deriving time
bounds that explicitly account for the degrees of asynchrony that exist in dis-
tributed systems. Several different models of semisynchrony have been used, cap-
turing different concerns about issues of real time. Similar but different problems
have been studied in these models, yielding quantitative results that are seem-
ingly related. This paper attempts to present a unified view of these research
efforts, sunmarizing the concerns addressed by each. We compare solutions to
the general problem of simulating round-based synchronous algorithms and fo-
cus on specific solutions to consensus-type problems, which, as the fundamental
distributed problems requiring some synchrony, are the natural candidates for
the initial stages of this research. By comparing the concerns and approaches
in both studies, we have sometimes been able to achieve significant and sur-
prising improvements over existing results. Although we have found that most
techniques do not carry over from one setting to the other, understanding the
disparity has led to a greater appreciation of what aspects of these two prob-
lems are important to different measures of real-time performance. In addition,

121

our study has revealed some very natural unanwered questions regarding these
problems as well as the area of clock synchronization.

For this extended abstract we consider two models of timing in distributed
message-passing systems®; briefly (see Section 2 for complete definitions), these
are

1. The TA (“Timed Automata”) model: A basic model of semisynchrony, for-
malized and studied by Attiya and Lynch ([AL89, ADLS90, P91]). Studies
in this model focus on the effect of the maximum possible ratio of processor
rates, denoted C. Message delay time is denoted d.

2. The AC (“Approximately synchronized Clocks”) model: A model in which
processors are assumed to have approximately synchronized clocks. Stud-
ied by Strong, Dolev, and Cristian ([CASD86, SDC90, GSTC90]). Work in
this model have focused on the effect of the maximum difference e between
clocks (“skew” or “precision”). The maximum possible ratio of clock rates is
denoted A and the message delay is denoted d4c.

In each of the models, it is easy to simulate arbitrary synchronous round-
based algorithms by allowing the maximum possible time for each round. How-
ever such straightforward simulations are generally inefficient. The motivating
question is

Can one do better than directly simulating round-based algorithms?

Natural vehicles to explore time complexities are the fundamental fault-
tolerant problems of consensus and atomic broadcast. We distinguish atomic
broadcast from consensus in two ways: consensus is “multi-source” and one-time
only-—~each processor gets exactly one input value and the output is a single
value; atomic broadcast is “single-source” and dynamic—each processor may
get input values repeatedly and the output is a sequence of these values, which
must be identical for each processor. The consensus problem has been studied
in the TA model ([ADLS90, P91]) and the atomic broadcast problem has been
studied in the AC model ([CASD86, SDC90, GSTC90, BGT90]).

1.1 Owur results

We apply algorithmic techniques used for consensus (with Byzantine failures) in
the TA model to obtain a greatly improved algorithm for atomic broadcast (with
Byzantine failures) in the AC model. The best previous algorithm ([SDC90]) for
atomic broadcast in the presence of Byzantine failures had “latency”* 2e+3(2+
A+A%+.. .+ A%)dsc, where f is the number of Byzantine processor failures to be
tolerated. We adapt an algorithm from [P91] to obtain a vastly simpler algorithm
with much simpler analysis and an improved latency of 2e+ ((1+2A4)f + 1)dc.

3 In the full paper, we also include comparisons with the related model studied by
Herzberg and Kutten ([HK&9]).
* A measure of time complexity defined in Section 2.4.

122

We also prove that, even for more benign failures (such as authenticated
Byzantine or clock failures with send and receive omissions), a lower bound for
latency is 2e + (f + 1}d4¢. This improves on the previously best known lower
bounds of 2e + 2dac ([SDC90)) and e + (f + 1)dac ([CASD86)).

Although there is a vast literature on the problem of atomic broadcast (e.g.,
[CM84, BI8T, MMA90, MMAYE, ADKM92]), we know of no work that focuses
on the real time complexity of this problem when processors are not fully syn-
chronous. Surprisingly, there is no simple algorithm for solving atomic broadcast
in the TA model (even inefficiently). We consider implementing synchronized
clocks in the TA model as one way of solving the atomic broadcast problem. Un-
fortunately, many important clock synchronization algorithms such as [ST87],
[DHSS89] and [LL88] were designed only for systems with extremely small drift
(C = 1+¢); it is not clear whether these algorithms can be exiended to work for
the case we are interested in, when C is large. > We also adapt a lower bound
proof of [ST87] to show that A > C for any clocks implemented in TA.

Finally, we derive several simple reductions between the problems and mod-
els, They relate latency of atomic broadcast with the real time required to achieve
consensus. We first show that if there is an atomic broadcast protocol with la-
tency L, then there is a consensus protocol for the AC model that requires at
most real time R & (L + 2¢)/v/A. We also show that if there is a consensus
protocol that requires at most real time R, then there is an atomic broadcast
protocol with latency L ~ VAR +dac +e.

2 Models, problems, and discussion

Consensus-type problems are the most natural candidate to study in a semi-
synchronous model: their time complexity is well understood in the case of syn-
chronous round-based computation; they are well known to.be impossible for
completely asynchronous systems, and the necessary degrees of synchrony have
been thoroughly studied ([DDS87]). However, the different models of semisyn-
chrony have inspired the study of different versions of the consensus problem.
We begin by describing the two models in more detail. In both models, pro-
cessors are completely connected by reliable message links and all parameters
are known to the processors. We consider the standard failure modes; unless
otherwise stated, “omission” failures refers “send-omission” failures only.

2.1 Model TA: A basic model of semisynchrony

A basic model of semisynchrony is developed in the work of Attiya and Lynch
([AL89]), based on the timed automaton model {[MMTS0]). Conceptually, the
model is very simple: successive steps of a nonfaulty process are separated by at
least time ¢; and at most ¢z and all messages sent are delivered within time d.

5 The question of whether e and A can be simultaneously minimized—e = d and
A = C—is a long-standing open question in the area of clock synchronization.

123

Although these constants are common knowledge among the processors, a pro-
cessor cannot directly determine the exact time between any two particular steps.
A “step” of a process consists of performing some local computation and sending
messages to other processors. Messages may be delivered to a processor between
two of its steps. Processors are assumed to obey the timing constraints if they
suffer omission failures but not if they suffer Byzantine failures. (An interesting
but unstudied alternative model of failure is “timing” failures, where processors
act correctly except that they may violate the step-time constraint. The most
efficient algorithm known for this class of failures is the algorithm for Byzantine
failures.)

In this model, the ratio ea/ey is used as a measure of the timing uncer-
tainty and denoted simply C' = eaz/e;. This parameter measures the rate of
drift between processors. Processor steps are typically much faster than message
transmission, so we usually consider ¢ < d and make approximations appropri-
ately. An essential factor in the running time of a round-based simulation is the
time required to timeout the message of another processor. We therefore first
outline why a timeout may take up to time C'd + d in this model. Suppose pro-
cessors implement fault-detection by continuously sending “I’m alive” messages
to each other, so that d is approximately an upper bound on the time between
the delivery of any two successive messages. If ¢ fails to send a message to p at
time ¢, p will begin to notice an absence of messages at time ¢ 4+ d. Processor p
concludes that ¢ has failed when it is sure that time d has elapsed since the last
message received. It can only conclude that time d has elapsed by waiting for
d/ecy steps, which may take up to time ¢ + d + ca(dfc1) = t + d + Cd. Thus we
see that although it takes only time d to receive a message, it may take up to
time Cd + d to delect the absence of a message.

Any round-based algorithm may then be simulated despite stopping or omis-
sion failures by continuously performing this timeout protocol between every
pair of processors. Each processor simulates round ¢ by waiting until for each
processor ¢, p has either received a round ¢ — 1 message from ¢ or has detected
the failure of ¢. Each round then takes approximately time Cd + d to simulate.
The goal of the work of [ADLS90, P91] is to quantify the effect of semisynchrony
on the real-time complexity of distributed computing problems: given a system
with parameters c;, e3, d, what are tight upper and lower bounds on the real time
required for these problems?

2.2 Model AC: Approximately synchronized clocks

A higher-level model of semisynchrony in the spirit of the work on clock syn-
chronization has been studied by Dolev, Strong, and Cristian ([SDC90]). Each
processor has a clock that stays within a linear envelope of real time: there exist
positive constants @; < 1 < ap and a3 such that for each clock of a correct
processor and for all real times ¢; < ¢,

a1(ty — 1) — ag < Clock(tz) — Clock(t1) < az(tz — t1) + aa.

124

Clocks of correct processors never differ by more than e. This is a discretized
version of the standard model of clocks that has been used throughout the liter-
ature on clock synchronization (e.g., [DHSS89, DHS86, LM85]). Processors dre
interrupt-driven; they may be caused to take a step either by the arrival of a
message or by its clock reaching a prespecified time. As in the TA model, a
processor may send messages to several other processors during one step. Also,
processors are assumed to obey the timing constraints if they suffer omission
failures but not if they suffer Byzantine failures.

In the AC model, the maximum delay of any message is defined in terms
of clock time: the interval between the sending and delivery of any message
measures at most da¢ on the clock of any correct processor. We use the subscript
AC to distinguish this term from d, defined in the TA model, which we retain
to denote maximum real lime between sending and delivery. To put the drift
assumption into a more usable forin, we first note that if an interval is timed
to be of length ¢ on the clock of a correct processor, then it measures at most
(a2/a1)t-+2a3 ~ At on the clock of any other correct processor (take t3~t; = t/a;
in the above definition). As with the TA model, we will generally assume that
the granularity of the clocks is much less than message delay—az < d4c—and
make appropriate approximations. We denote A = as/a; and call this quantity
the relative accuracy®.

How 'can synchronous round-based algorithms be simulated in this model?
Because clocks are available, timing out other processors is a simple matter: if p
is supposed to send a message to ¢ at time ¢ on its clock, then ¢ knows that the
message should be sent no later than time ¢ + ¢ on its own clock and therefore
should be received no later than time ¢t + e + doc on its clock. To simulate a
round-based algorithm starting at clock time ¢, each processor waits until time
t +#(dac + €) on its clock to receive round i messages and then sends its round
{ + 1 message.

2.3 Consensus

This version was studied in [ADLS90, P91]. It is the standard classical binary
consensus problem: each processor has a one-bit input and all correct processors
must agree on a one-bit output which is equal to the input if all inputs are equal.

Because each processor is supposed to receive an input for the problem, it
makes the most sense to assume that these inputs arrive within some known
time interval. (In the synchronous round-based model, processors are assumed
to begin executing the algorithm at the same time.) We therefore introduce a
parameter # to denote the length of the interval of real time in which all pro-
cessors receive their inputs. We measure running time as the difference between
the real time at which the last correct processor decides on a value and the real
time at which the first correct processor gets its input. Note that this definition
applies to all failure models. {The algorithms from [ADLS90] and [P91] work for
z > 0 with little or no modifications.)

8 This ratio is equivalent to “(14-p)*” in [ST87, LL88, DHSS89] and “1+p” in {SDCH0].

125

2.4 Atomic broadcast

This version was studied in [CASD86, SDC90, GSTC90]. It is a dynamic problem
in the sense that inputs arrive repeatedly and asynchronously. At any time,
a processor may receive a binary input which must be broadcast to all other
processors. Processors must output a sequence of values such that (1) all correct
processors output the same sequence of values, and (2) the input sequence of
each correct processor appears as a distinct subsequence of this sequence. Note
that this definition allows for the possibility that processors may agree on a
value different from the sender’s input even if the sender suffers only stopping
or omission failure. When a processor {irreversibly) adds a message to its list, it
is said to deliver the message.

A natural definition of real-time complexity for this problem is to measure
the difference between the time that a processor gets an input and the time
the last correct processor delivers the message. This definition is workable for
omission failures, but it is not meaningful if a Byzantine processor delays acting
on its input and then correctly executes the broadcast algorithm on that input;
in this case the time cannot be bounded.

In [CASDS86], this difficulty is resolved for the AC model by defining a time
complexity measure called the latency. This measurement requires as part of the
problem statement that when a processor initiates a message, it should attach
its local time to the message.

Definition 1. The latency of an algorithm for atomic broadcast is the maximum
difference (over all executions, processors, and messages) between the local clock
time that a correct processor delivers the message and the timestamp on that
message.

Thus the algorithms developed for atomic broadcast in the AC model are con-
cerned not with minimizing the elapsed real time, but with minimizing the age of
any message (as defined by its timestamp) that must be accepted by a processor,
relative to its current clock time. Although this measure may seem unnatural at
first, it does have the advantage of being directly observable by processors. Note
that for stopping or omission failures, the latency is equal to e plus the maxi-
mum time that can elapse on a processor’s clock between the real time of the
input and the real time that the processor delivers the corresponding message.
Of course, this is not true for Byzantine failures, as clocks of faulty processors
need not be within e of each other.

2.5 Previous work

Work on consensus in the TA model has focused on the extent to which the drift,
or timing uncertainty, C, affects the real-time complexity. A straightforward
rounds simulation (for omission failures) requires time approximately Cd per
round. Interesting new algorithms were developed with running times of 2fd+-Cd
for stopping failures ([ADLS90]} and 4(f + 1)d + Cd for omission failures and
(2f + 1)Cd + fd for Byzantine failures ([P91]).

126

Work on atomic broadcast in the AC model, however, has focused on the
extent to which the clock skew e affects the running time; the effect of drift
(A) has not been a primary concern of this research. A straightforward rounds
simulation may require clock time dac + e per round. It is easy to show that
this is not optimal for stopping and omission failures; a simple message-diffusion
algorithm gives a total latency of (f + 1)dac + e ([CASD86]). However, a great
deal of effort was needed to achieve a latency of 3(2 + 3°/_, A)d4c + 2¢ for
Byzantine failures ([SDC90]).

From looking at the results above, it is tempting to infer some kind of rela-
tionship between the additive factor of C'd which the TA bounds minimize and
the additive factor of ¢ which the AC bounds minimize. However, we shall see
that no such relationship exists.

3 Improved latency bounds for atomic broadcast

3.1 Round simulations

We first consider the general problem of simulating synchronous rounds. For
simplicity, we will assume that all processors begin a TA rounds simulation at
the same real time and an AC rounds simulation at the same clock time. We
saw in Section 2 that rounds may be simulated in the AC model at a cost of
dac+e elapsed clock time per round (for all failure models) and in the TA model
at a cost of Cd + d real time per round (for stopping or omission failures) or
(2C+1)d per round (for Byzantine failures). In neither model does the respective
round simulation yield an efficient algorithm for consensus or atomic broadcast
(except for the Byzantine consensus algorithm in the TA model, which is not
known to be suboptimal—i.e., it is not known whether O(fd) + Cd is sufficient
or if 2(fCd) is required).

We consider adapting rounds-simulation algorithms of the TA model to work
in the AC model. The algorithms for the TA model use the bounds on step time
exclusively for deriving upper bounds on elapsed time—for instance, counting
enough steps to ensure that time d has passed after sending a message in order to
be sure that it has been delivered. These algorithms can thus be used in the AC
model with little change by instead using the clocks to give such guarantees—for
example, if a processor waits for time d ¢ on its clock after sending a message, it
ensures that the message must be delivered because at most time d 4¢ can elapse
on any correct clock while the message is in transit. Thus the clocks are used as
“timers” to measure the length of intervals, and their synchronization—that they
are within e of each other——is ignored.

The rounds simulation for omission failures in the TA model described in
Section 2.1 uses real time (C+1)d per round. To analyze the adapted algorithm in
the AC model, we must ask how much any clock may advance during a “round”.
As with the analysis in the TA model, the worst case is when a single processor
fails just before sending its round message; this causes the other processors to
wait for d/c; steps, or Cd time, before concluding that a failure has occurred. In

127

the AC model, this failure leads to a worst-case latency if a processor with a fast
clock quickly concludes that a failure has occurred while another processor with
a slow clock takes longer to reach that conclusion; on the slower clock, time dsc
elapses while on the faster clock, time A-d4c elapses. By a similar argument as
in Section 2.1, we see that some clock may advance (A + 1)d ¢ each round. We
note that the worst-case execution in the TA bound is with all processors going
fast, whereas in the AC bound, it is with one clock going slow and another going
fast.

Thus the adapted simulation is successful in avoiding an additive ¢ with each
round, improving in that respect on the first simulation described for the AC
model. It suffers, however, from the A 4 1 factor of d4c. Suppose we use this
round simulation to run a standard atomic broadeast algorithm for emission
failures (assuming a common clock start time). Simulating f + 1 rounds gives a
total latency of about (f + 1)(A+ 1)dac + e, as a faster clock may have started
out e ahead of that of the processor receiving (and timestamping) the input.
This fails to improve the latency of the simple message-diffusion algorithm of
[CASDS86).

Indeed, even if we translate the efficient consensus algorithm of [ADLS90],
the resulting latency is 2fd 4o +Adac+e, which is also worse than [CASD86]. We
remark that the algorithm of [ADLS90] can be viewed as an optimized simulation
of a synchronous early-stopping consensus algorithm with a special property
regarding the circumstances under which a processors must advance to successive
rounds (see [P91]). This suggests that it may be possible to identify a class
of efficiently simulatable synchronous algorithms whose simulations need incur
neither the e per round nor the A 4 1 factor of dac.

The algorithm for consensus with Byzantine failures in the TA model [P91]
works by simulating synchronous rounds efficiently (relative to naive strategies).
In Section 3.2 below, we show that this simulation, which uses time (2C + 1)d
per round, may be adapted to the AC model so that any clock advances at most
(2A + 1)dac per round. However, because the clocks of Byzantine processors
may differ from correct clocks by more than e, the total latency for simulating
f + 1 rounds turns out to be (f + 1)(24 + 1)dac + 2¢ (instead of plus le).
Surprisingly, this is far better than the latency bound of [SDC90] (modulo the
synchronized start assumption).

We see that except for this assumption the adaptation of the TA rounds-
sitnulation improves the atomic broadcast latency bound for Byzantine failures
but not for stopping or omission failures. We can now see that the differing factor
of e for omission and Byzantine failures (1 and 2, respectively) is precisely due
to the difference on the clocks at the beginning of the algorithm.

3.2 The algorithm

The following algorithm simulates synchronous rounds despite Byzantine fail-
ures, under the assumption that it is common knowledge that the input message
should be timestamped T. The algorithm uses the synchronized clocks to wait

128

for round one messages (this is where the additive 2e is incurred) and then re-
lies only on the rates of the clocks for the rest of the algorithm. All times are
measured on local clocks.

la. ‘Wait until time T + d4¢ + € or until f + 1 round 2 messages received
1b. Send round 2 message

2a, Wait until 2f + 1 round 2 messages received

2b. Wait for time 2d4¢ or until f + 1 round 3 messages received

2c. Send round 3 message

(i — 1)a. Wait until 2f 4+ 1 round i — 1 messages received
{i — 1)b. Wait for time 2d 4¢ or until f + 1 round # messages received
(i — 1)c. Send round i message

ra. Wait until 2f + 1 round r messages received ithe last round
rb. Wait for time 2d4¢
END

Theorem 2. (Correctness) For n > 3f +1, the above simulation ensures that
each correct processor receives round i — 1 messages from all correct processors
before sending its round i message.

Proof. First note that because n > 3f + 1, processors will eventually advance to
all rounds of the simulation. It is clear that a processor does not send its round 2
message before receiving a round 1 message from all correct processors: consider
the first correct processor to send a round 2 message. It cannot receive f + 1
round 2 messages before it sends, so it must wait until T+ d4¢ + ¢ on its clock
before sending. Clearly, all round 1 messages of correct processors are delivered
by this time. All other correct processors send their round 2 messages later.

In subsequent rounds, when the first correct processor p sends its round
message, the round i — 1 messages of all correct processors have been delivered:
Because p is the first correct processor to send its round ¢ message at (i — 1)c, it
could not have received f 4 1 round i messages before then and therefore must
have waited for a period of 2d ¢ on its clock after it received 2f + 1 round i —1
messages. After p has waited dac, all correct processors have received at least
F + 1 of those messages and therefore, by the code, they must have sent round
i — 1 messages (they must already be at least to (i — 2)b, since they have each
sent a round i — 2 message to p by the induction hypothesis and then advanced
to (i — 2)a, and subsequently received at least 2f 4+ 1 round i — 2 messages from
each other). These round ¢ — 1 messages are received by all processors within
another time dac on p’s clock, which is when p sends its round i message. 0O

To tolerate Byzantine failures with authentication and n > 2f + 1, simply
change “Wait until 2f + 1 round i— 1 messages received” to “Relay f +1 round

129

i — 1 messages.” Thus a processor p executing this statement ensures that all
other correct processors will send their i — 1 messages within 2d 4 because the
signed relayed messages satisfy (i — 2)b.

Theorem 3. (Latency) The latency for simulating a synchronous algorithm of
f+ 1 rounds in the presence of Byzantine failures is ((1+ 2A)f + 1)dac + 2e.

Proof. For a given execution define

¢ Cp(t) = the value of processor p’s clock at real time ¢,

e 1; = the latest real time at which a correct processor sends a round ¢ message,

. tf" = the latest real time at which the round i message of any correct processor
is delivered.

So we have Cp(ta) < T+ dac + 2e for all correct p, since every correct processor

sends a round 2 message by time T + d4¢ + € on its clock, at which time the

clock of any other correct processor reads at most (T'+ dac +¢) +e.

By induction on the round number i > 2, we show Cp{tit1) — Cp(ti) £
dac + 2dacA: First note that C,(1§*') — Cp(t:) < dac for all correct p, by the
definition of d4¢-. Now consider the last correct processor g to send a round
i 4+ 1 message (at time #;41). It receives a round i message from each correct
processor by real time t#*! and sends its round i+ 1 message no more than 2d,¢
on its clock thereafter, so we have Cy(tiy1) — C,(t#*') < 2dac. As we showed in
Section 2.2, this implies that Cp(ti41) — Cp(t#!) < A(2dac) for all correct p.

Summing over rounds 2 through f + 2 (the processors END at “t7y2"), we
have Cp(t42) — Cp(ta) < f(1 4+ 2A)dac for all correct processors p.

Because a processor knows the initial message was scheduled to be sent at
time T, it need not deliver a message with timestamp older than T, and the
latency of the algorithm is

Cp(trs2) =T < Cplty42) — (Cp(ta) — dac — 2¢) < (14 24) fdac +dac + 2e
o

Removing the synchronized start assumption. A simple but message- and
computation-inefficient way to remove the assumption that processors know the
starting time is for the processors to execute the broadcasts as if an input were
known to be received every ¢ time on their clocks, using “dummy” messages if
they have received no input. When a processor gets an input, it sends the initial
message with the beginning of the next scheduled execution of the simulation.
The total latency is then € 4+ ({1 + 2A4)f + D)dac + 2e, for any .

A less wasteful way to remove this assumption is to use a clever proto-
col developed in [BGT90] to synchronize the starting round of an agreement
algorithm.” This protocol adds 3(e+d) to the latency. When a processor receives
an input m at local time ¢, it broadcasts a message “start: f” announcing that an
execution of the broadcast algorithm will begin at clock time t + 3(dac +e€). At
that time, the processors will execute n atomic broadcast algorithms in parallel

* One could use the “firing squad” algorithms for this purpose, but they require f +3
rounds, whereas this technique requires only an additional three.

130

as each processor broadcasts a vote (the original processor broadcasts m along
with its vote). That is, the broadcast algorithms are executed by each processor
as if it knew that every processor were scheduled to receive an input (which is
actually its vote) at clock time t + 3(dac + €). The vector of votes produced
by the broadcasts determines whether m is delivered by the processors, Any
processor that receives a “start: t” message by ¢t + dac + ¢ on its clock and
relays the message to everyone and participates in the broadcasts with a vote
of YES. Any processor that receives a (possibly relayed) “start: t” message by
time t + 2(dac + e) on its clock (but not by t + dsc + ¢} relays the message to
everyone and participates in the broacasts with a vote of NO. In either case, if
the broadcasts produce a vector of votes with at least f + 1 YES’s, then these
processors deliver m iff they would deliver m according to the atomic broadcast
algorithm corresponding to the originator. However, a processor that does not
receive a relayed message by time ¢+ 2(d ¢ +€) participates in the broacasts (to
the best of its ability-—depending upon when it first hears about the broadcasts)
but does not deliver m as a result of the broadcasts. The claim is that despite
the fact that the original atomic broadcast algorithm is guaranteed to work only
if all correct processors participate, with the addition of this protocol a correct
processor delivers m if and only if all correct processors deliver m.

Claim 1 For any atomic breadcast algorithm that is correct when the clock time
of input is common knowledge, the protocol above ensures that even without
this common knowledge a correct processor delivers m if and only if all correct
processors deliver m.

Proof. Suppose a correct processor p delivers m. Then p must have received a
“start: t” message by time ¢+ 2(d ¢+ ¢) on its clock and therefore all processors
received a “start: t” message by time ¢ 4 3(dac + €) on their clocks. Thus, all
correct processors participated in the entire broadcasts and the same vector of
votes is therefore produced at each processor. In particular, all correct processors
agree on whether or not m was received. Now, for p to deliver m, at least f+1 of
those votes must be YES, so some correct processor received a “start: t” message
by time { + d4¢ + ¢ on its clock. It follows that each processor receives a “start:
t” message by time { + 2(dac + ¢) on its clock and therefore delivers m as a
result of seeing f + 1 YES’s. |

3.3 Optimal precision

In this section, we prove a lower bound on the latency of the atomic broadcast
problem of (f + 1)dac + 2e if processors fail by omitting messages and having
clocks that differ from correct clocks by more than e. By improving over the
previously best known lower bounds of 2¢ + 2d ¢ ([SDC90]) and e + (f + 1)dac
([CASDB86)), we obtain the first lower bound that is tight (with the Byzantine
upper bound) both precisely in the factor of e and to within a “constant” factor
in its coefficient of dsc. The “constant” factor is in fact equal to about twice
the drift rate A; it remains a major open question in this area to obtain lower
bounds that depend substantially on the drift (A or O).

131

Theorem 4. Any algorithm for atomic broadcast in the AC model tolerating
send and receive omission failures and clock failures has latency at least (f +
1)dac + 2e.

Proof. Let @ = {2,...,n— f} and R = {n — f +1,...,n} be subsets of the
processors. For the purposes of the proof, the rate of clocks and all absolute
readings are unimportant. We will assume throughout the proof alt clocks run
at the rate of real time, with 1’s clock displaying real time exactly, @’s clocks
reading e greater than real time, and R’s clocks reading 2e greater than real time.
Processor 1 receives an input message & at real time 0. All times and intervals
in the proof refer to real time unless otherwise specified. We use d = dac.

Let Eq be an execution in which (1) for all k, any message sent in the interval
[(k — 1)d, kd) is delivered at time kd, and (2) processor 1 acts as if it has done
everything correctly, but it omits # to R. By delivering messages only at muitiples
of d, we can identify each interval [(k — 1)d, kd) with a “round” in the natural
way. Although processor 1 is clearly faulty in Eq from the point of view R, to @
it is equally possible that all processors in R {which number f) received z but
are claiming otherwise. Note that @ may also be able to discern that either 1 or
R must be faulty by discovering that their clocks differ by more than e. Now, if 1
sends follows the algorithm with respect to ¢, then processors in @ must deliver
it, despite what 1 says to K. To ensure agreement, correct processors in B must
deliver z if those in ¢} deliver it. Thus, in Ey, all correct processors deliver x.

We can now mimic the argument of the synchronous lower bound ([DS83,
DM86, M85, CD86)) of creating a chain of executions Ey,..., E” such that in
E' no input is received by processor 1. Each pair of successive executions is
indistinguishable to some correct processor in R before time T+ (f + 1)d + 2e
on its clock. All correct processors must deliver in Fg but not in £, so some
pair of executions must be distinguishable to all correct processors by time T
plus the latency on their clocks. Thus, the latency must be at least (f + 1)d+ 2e.

Each successive pair of executions differ only in the existence of a single
message. Clearly, if a message m is sent in the interval [{f — 1)d, fd), then only
the recipient can tell by time fd if m has been sent or not. Since subsequent
messages sent by the recipient are not delivered until time (f +1)d, processors in
R cannot tell before time (f + 1)d + 2¢ on their clocks if m has been sent or not.
‘Thus, only one processor in R (if it is the recipient of m) can distinguish before
local time (f + 1)d -+ 2e between two executions that differ only in whether or
not m is sent in the interval [(f — 1)d, fd).

Starting with execution Ey, for any processor p we may construct a sequence
of executions Ey, ..., F’ such that p sends no messages at all in the interval
[(f = 1)d, fd) of E' and each pair of successive executions is indistinguishable to
some correct processor in R. This is done by removing one at a time each message
sent by p in the interval. Another execution created by removing a message sent
by p' to p in the interval [{f — 2)d,{f — 1)d) is then clearly indistinguishable
from E’ to all processors but p (since p sends no messages in E' after time
{f-1)d). Now, by adding back one at a time the messages sent by p in the interval
[(f —1)d, fd), we can continue the sequence to arrive at an execution that differs

132

from E only in the message from p’ to p. In this manner, we can remove any
messages of up to f—1 processors in addition to processor 1. This is easily proved
formally with a (standard) recursive proof (see [DS83, CD86, M85, DM86]). We
finally arrive at an execution E” in which processor 1 omits m to all processors,
completing the proof.

The key fact is that this sequence of executions leading to E" has the prop-
erty that each consecutive pair is indistinguishable to some correct processor. in
R. This is because the recursion requires that for each execution, at most ¢ pro-
cessors fail in the first ¢ rounds. Since processors in R don’t receive m directly
from 1 by time d, there is no need to remove any messages sent by processors in
R before time 2d; therefore at most f — 2 processors in R are faulty in any pair
of successive executions. At most one processor can distinguish between any pair
of successive executions, leaving us at least one in R that cannot. o

3.4 Real-time bounds for atomic broadcast

In addressing the atomic broadcast problem in the TA model, we encounter two
problems. The first is that new techniques are needed to establish a common or-
dering of messages—atomic broadcast algorithms for the AC model establish this
ordering by delivering messages in timestamped order, making critical use of the
synchronized clocks. The second problem, discussed in Section 2.4, is with defin-
ing the running time for Byzantine failures. In this section, we avoid Byzantine
failures altogether and take solve the ordering problem by simply implementing
synchronized clocks in the TA model.

The extensive literature on clock synchronization has thoroughly studied
almost exactly this problem of implementing clocks—given “hardware” clocks
that drift from real time at some rate bounded by a constant, implement logical
“gsoftware” clocks that drift from real time as little as possible and are also
within some constant (“skew”) of each other. Unfortunately, to the best of our
knowledge, all clock synchronization algorithms (e.g., [ST87], [DHSS89], [LL88])
were designed only for assume extremely small rates of drift in the “hardware”
clocks (C = 1 +¢).

* We can implement a “hardware clock” as a counter that increments by /¢y ¢z
at each step. An interval with k steps is measured to be of length £ = k./¢ica
on the hardware clock but its real time may be as little as ke; = £//C or as
great as keq = V/Ct. Thus we essentially get a drift of VC relative to real time;
the relative accuracy is C'. The clock synchronization algorithm of Srikanth and
Toueg ([ST8T]) preserves this drift in the logical clocks and gives a worst-case
skew of VC(2C + 1)d (c.f. their expression for Diax on p. 631, with their (1+ p)
equal to v/C and their dpin = 2¢4e equal to our 2d).

Using the synchronized clocks, we can run the message diffusion algorithm
([CASD86]) with latency L = (f + L}dac + ¢. Because an interval of ¢ units
of real time may be measured as +/Ct on a fast clock, we conclude that the
delay d of any message measures at most +/Cd on the clock of any correct
processor; this is “dsc”. Because any clock reads at least T' — e when the input
is received at time ¢, the maximum elapsed clock time from ¢ to the last delivery

€5

a probability of success greater than 1 — 2719 ¢an be achieved for any number
of identical processes using registers which are just 9 bits wide.

Theorem 4. For any k,n, and security perameter g, there exists a randomized
protocol for n processes using m = 2¢ + logmin{k,n} + 2loglog min{k,n} + 3
symbols which solves the k-CCP for n processes and terminates with probability
greater than 1 — 279,

The proof of Theorem 4 is based on the analysis of the protocol given in Figure
3. This protocol was designed to make the analysis of the worst case simple.
There are many obvious optimizations which improve its behavior on fortuitous
runs. Before analysing the protocol we give an informal description of it and an
intuitive idea of why it works.

The Protocol

The randomized protocol, like the deterministic one, works in phases. Each phase
uses some new symbols in an attempt to reduce the number of registers which
may end up containing e. If in a predetermined number of phases the number
of live registers (ones in which e may eventually be written) is reduced to one
then the protocol succeeds. The use of more symbols per phase or more phases
will increase the probability of success. Thus given a bound on allowable failure
probability we can ask what is the smallest number of symbols which can attain
this failure probability.

More specifically, in each phase each process picks a register which survived
the previous phase (we call these registers 4ve), writes in this register a random
symbol from those symbols assigned this phase, and then attempts to write the
kill symhol in all registers containing symbols from earlier phases. Intuitively, it
has ensured that at least one register survives the phase and then tried to kill all
other registers. As in the deterministic protocol we use a lock construct to denote
the read-modify-write. Inside the lock the process may generate a random value,
The choice being made inside the lock is meant to denote that we assume that
the gcheduling of the read-modify-write cannot depend on the choice of random
value.

A phase completes when all registers contain symbols from the same phase
or the kill symbol. All registers containing the maximum-value, least-frequently-
occurring symbol are considered to have survived the phase. If only one register
survives (recall that at least one must survive) then the protocol has completed
successfully and this register is chogen. Otherwise, if more phases remain the
next phase is begun. If this was the last phase then the protocol fails.

As in the deterministic protocols, care must be taken to make sure that all
processes, no matter how long they are delayed, make consistent decisions. In
particular any processes deciding to go to the next phase must agree on which
registers survived the previous phase.

The simplest version of the protocol uses two symbols at each phase. By
bounding the number of phases required to, with high probability, successively

180

Since the fail-stop protocol is non-pumping, a send_message(m) action can
occur only when m, is empty (since otherwise the link is busy). We focus on
links that are connected since a disconnected link is allowed not to deliver any
packet, making the simulation trivial, For a connected link, every packet that is
sent is either delivered or the link changes its status to DOWN. (If the link is
DOWN and does not change to UP then the link is disconnected.) Furthermore,
every connected link that at time ¢ is DOWN will eventually be UP. In the
simulation the transmitter retransmits the message every time the link changes
from DOWN to UP until eventually the message is acknowledged. Therefore,
every message, sent on a connected link, is eventually forwarded to the fail-stop
protocol. Since the simulation requires only two more variables per station, the
space complexity is G{S). 0

3 The Topology Update Problem

3.1 FEventual connectivity and stability

Each node v € V has a variable status(v, u), for each of its links (v,u) € E.
The value of this variable, denoted by status,(v,u), is either UP or DOWN,
according to the status of the link (v, u).

— Eventually stable link- A link (u, v) is an eventually stable, if there exists
a time ¢ , such that for any time f, £ > ¢, both the values status,(u,v)
and status,(v,u) do not change. (Le. from some time on, either the link
is constantly UP or the link is constantly DOWN). Note that in this case
statusg, (u, v) and status, (v, u) are equal.

— Eventually connected link- A link ¢ = (u, v) is eventually connecied, if

* for any time ¢, there exists a time i, £ > ¢, such that at time £ the status of
is UP (on both sides), and if infinitely many messages are sent on e, starting
at {, eventually a message is received.

— Eventually connected path- A path that is composed from eventually
connected edges.

— Eventually connected sub-network - A maximal set of nodes that any
two of them have an eventually connected path to between them.

3.2 The specification for the topology update and data update

The topology update protocol has in each node v € V a variable status(u,w),
for every link (u,w) € E. The value of status(u,w), denoted by status, (u,w),
is either UP or DOWN. Intuitively, status,(u,w) reflects the estimation of v
about the status of link (u,w). The topology update protocol “succeeds” if for
every stable link e = (u,w), there exists a time T, such that at any time ¢,
t > T, status, (u, w) = stetus,(u, w), for every node v that is in the eventually
connected sub-network of u. {In other words, if (u, w) is an eventually stable link,
then every node in the eventually connected sub-network of u will eventually have
the “stable” status of the link (u,w).)

134

messages to a subset that are “believable” in the sense that for each one, there
are enough other messages with timestamps inside a small enough interval.
Finally, we have the following simple theorem which we state without proof.

Theorem 8. If there is a consensus protocol in AC with x > (e + aa)/a; and
with real time from start to finish bounded above by R, then there is an atomic
broadcast protocol in AC with latency bounded above by L = asR + e + dac.

4 Directions for further research

e Is there an algorithm for multi-source consensus with Byzantine failures
in the TA model, assuming synchronized start, that runs in time o fCd)?
O(fd)? Same question but for ‘timing” failures (see Section 2.1)?

e What are good bounds for the real time complexity of atomic broadcast in
the TA model?

¢ How well can clocks be synchronized for very inaccurate “hardware” clocks
(C >3/2)?

® Can the algorithm for atomic broadcast in the AC model presented in sec-
tion 3 be generalized for authenticated Byzantine failures with n < 2f to
give an algorithm running in time with nz—_”f as the coefficient of €7 (See
[SDC90].)

5 Acknowledgments

We thank Faith Fich for her comments.
References

[ADKM92] Y. Amir, D. Dolev, S. Kramer and D. Malki. Total ordering of messages
in broadcast domains. Manuscript,

[ADLS90] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time to
reach agreement in the presence of timing uncertainty. MIT/LCS/TM-435,
November 1990. Also: STOC 1991,

[AL89) H. Attiya and N. A. Lynch. Time bounds for reai-time process control in
the presence of timing uncertainty. Proc. 10th IEEE Real-Time Systems
Symposium, 1989, pp. 268-284. Also: MIT/LCS/TM-403, July 1989,

[BI87] K. Birman and T. Joseph. Reliable communication in the presence of fail-
ures. ACM TOCS, Vol. 5, No. 1 {February 1987), pp. 47-76,

[BGT90] N. Budhiraja, A. Gopal and 8. Toueg. Early-stopping distributed bidding
with applications. Proc. 4th Int’l. WDAG 1990.

[CASD86] F. Cristian, H. Aghili, R. Strong and D. Dolev. Atomic broadcast: from
simple message diffusion to Byzantine agreement. Proc. 15th Int, Conf,
on Fault Tolerant Computing, 1985, pp. 1-7. Also: IBM Research Report
RJ5244, revised October 1989.

{CM84] J. M. Chang and N. Maxemchuck. Reliable broadcast protocols. ACM
TOCS, Vol. 2, No, 3 (August 1984), pp. 251-273.

[CD36] B. A. Coan and C, Dwork. Simultaneity is harder than agreement. Infor-
mation and Computation Vol. 91, No. 2, 1991,

188

in Section 6, and Section 7 contains the complexity analysis. We conclude, in
Section 8, with a discussion on the convergence time measure.

2 Models of Networks

The following are three well-known theoretical models for networks:

— Static networks- Every message that is sent is eventually delivered.

— Fail-Stop networks- The sequence of messages that are delivered, over a
specific link, is a prefix of the sequence of messages that were sent on the
link.

— Dynamie networks- Each node has, for each of its links, a status variable
which is either DOWN or UP. The node can send a message on a link only if
the link’s status is UP. The fact that a link status is UP does not imply that
a message sent on that link is eventually delivered. A dynamic network is
eventuolly stable if there exists a time after which no link changes its status.

Comment: The data link layer, ensures that if a node on one side of the link has
the link’s status as U P then, from some time and on, the node on the other side
has the link’s status UP as well. This means that if status,(v,%) = UP from
some time and on, then eventually status,(u,v) =UP.

The data link layer in a communication network has only a fixed number of
buffers, therefore only a fixed number of messages can be in transit over a link.
The network models above do not ensure that the number of messages in transit
over a link is bounded. We define the non-pumping resériction that ensures that
only a constant number of messages are sent simultaneously over the same link.

Non-pumping resiriction- For every rhessa.ge that is received an acknowledgment
is sent. The link is said to be busy from the time a message is transmitted un-
til an acknowledgment for it is received. No message is sent while the link is busy.

Note that the non-pumping restriction implies that at any time there are at
most two messages in transit over a link.

A link in a fail-stop network is connected if every message that is sent on
that link is eventually received, otherwise the link is disconnected. A link in a
dynamic network is connected if for every time ¢, there exists a time f, £ > ¢,
such that at time £ the link is UP and if infinitely many messages are sent then
eventually a message is received, otherwise the link is disconnected. A fail-stop
network is eguivalent to a dynamic network if every link has the same status
(connected or disconnected) in both networks. The following theorem ensures
that a protocol for a non-pumping fail-stop network can be transformed to a
protocol for a non-pumping dynamic network.

Theorem 1. 4 non-pumping fail-stop network, with space complezity S, con be
simulated by an equivalent non-pumping dynamic network, with space complexity

0(S).

Optimal Time Byzantine Agreement for
t<n/8
with Linear Messages

Arkady Zamsky, Amos Israeli and Shlomit S. Pinter

Dept. of Electrical Engineering, Technion, Israel

Abstract, The Byzantine Agreement problem provides an abstract
setting in which methods for tolerating faults in distributed systems may
be explored and perhaps influence practical designs. A Byzantine Agree-
ment protocol is a distributed protocol in which one distinguished proces-
sor called the source broadcasts some initial value to all other processors.
The protocol is designed to tolerate up to t faulty processors. The receiv-
ing processors should agree on some common output value. In case the
saurce is correct the output value should be equal to the source’s initial
value. The quality of a Byzantine agreement protocol is measured by the
following parameters: the ratio between the total number of processors n
and the number of faulty processors ¢, the number of rounds of message
exchange needed to reach an agreement, and the communication com-
plexity, given by the size m of the maximal message. This paper presents
a Byzantine Agreement protocol with n = 8 . ¢ 4+ 1, optimal number of
rounds (namely min{f + 2,t + 1} where f i3, number of actual faults),
and messages of linear size {namely m < n + O(log n}). This is the first
protocol that reaches Byzantine Agreement in optimal time, tolerates
t = O(n) faults and uses messages of linear size. All previous protocols
that stop in optimal time and tolerate { = O(») faults require messages
of size at least ((n?). The new protocol uses a novel technique called
Reconstructed Traversal which is based on the Reconstruction Principle
and on the Coordinated Traversal protocol.

1 Introduction and Problem Statement

The Byzantine Agreement problem [12] provides an abstract setting in which
methods for tolerating faults may be explored and perhaps influence practical
designs. A Byzantine Agrcement protocol is a distributed protocol in which one
distinguished processor called the source broadcasts some initial value to all
other processors. The broadcast value v is drawn from a finite domein W. For
simplicity we assume that W = {0,1} where 0 is called the default value. The
protocol is designed to tolerate up to t faulty processors. The receiving processors
should agree on some common output value. In case the source is correct the
output value should be equal to the source’s initial value. We say that the system
reaches Byzaniine Agreement (BA) if the following two conditions hold:

186

only to nodes that are not “permanently disconnected” from both endpoints of

that link.)

One way to solve the topology update problem is to use existing solutions for
the end to end problem. Afek and Gafni [AG88] gave the first bounded solution to
the end-to-end problem in dynamic networks. The first polynomial solution was
given in [AMS89], which was later improve in [AGR] and [AG91]. Still the best
complexity of solving the end-to-end problem requires O(mn) messages per data
item that is sent, where m is the number of edges and = is the number of nodes.
For the topology update problem we need to have each node communicate to
each other node the status of all its link, This implies that using the best known
end-to-end protocol to solve the topology update problem requires O(mn?) per
topological change. In this work we present a much more efficient solution that
requires only O{m) messages per topological change, and is also considerably
simpler.

A weaker model is one with dynamic networks that eventually stabilize. The
main difference is that the algorithm guarantees to output a correct value only if
the network is stable. Infact, the topology update algorithms in this model (e.g.
[SG89]) do not solve topology update problem in a dynamic network that does
not stabilize. A general technique of transforming an arbitrary static protocol
into a dynamic protocol, in a network that eventually stabilizes, was given in
[AAGS8T). The technique of [AAG87] restarts the computation each time a topo-
logical change occurs. Since the computation is restarted each time a topological

change occurs, it would not stabilize if there is an infinite number of topological
changes.

The problem of topolegy update in a network that eventually stabilizes was
studied in [ACK90], where a topology update algorithm that has O(n) amortize
message complexity per topological change is given. However the algorithm re-
quires that the network would eventually stabilizes, otherwise the information
about the stable links does not stabilize.

Our main contribution is a new simple topology update protocol, which does
not use unbounded counters. Our protocol uses a well-known method in which
packets “age” as they travel through the network by using a “hop counter”. The
“hop counter” method is very widely used in practice, due to it simplicity and
efficiency (see [Tan81]). It is worth mentioning that the correctness and the com-
plexity of the protocol depends on the implementation of this method, different
implementations of the “hop counter” method lead to protocols which are either
extremely inefficient (e.g. require exponential communication overhead), or, at
least theoretically, incorrect.

Our protocol operates in a realistic network model, which takes into con-
sideration the buffer limitations of lower-level data link protocols. This implies
that only a constant number of messages are in transit on a link at a given time.
Thus, the implementation of the protocol requires bounded buffer space in the
lower-level data-link protocols. This consideration, although crucial in practice,
has not received the proper attention in the previous theoretical literature,

We introduce a general technique that enables to control communication

138

by Berman, Garay and Perry in {5], using the new technique of Cloture Vote.
Following that, Berman and Garay, in [3], Combined Cloture Vole with another
technique called Dynamic Fault Masking to obtain the CVDM protocol. Finally,
in [14], the new reconstruction principle was introduced and combined with Cio-
ture Vote of [5], to achieve yet another improvement. Independently, the idea of
reconsiruction (in a more complex form) was presented in [3].

Sometimes it is important to measure the total number of bits sent by all
correct processors during execution of the protocol. For this measure the lower
bound is £2(n?) bits [7). Because Byzantine Failures are relatively rare we are
interested in algorithms which are as efficient as possible if our network is faslure-
free. In [10] it is proved that the total message traffic in the failure-free case in
any BA protocol is at least 2(n - ¢).

In this paper we combine some of the techniques used in [14] with a modified
version of the Coordinaled- Traversal technique to obtain a novel technique called
Reconstructing Traversal The new protocol, which is called Ls8, is round-optimal
and tolerates up to ¢t < n/8 faults by using messages of lincar size (m < n +
O(logn)). Our protocol is much simpler then the original Coordinated Traversal
of [11].

The remainder of this paper is organized as follows. Some important def-
inition are presented in Section 2. In Section 3 we describe the “classic” full
information protocol FIP of [12]. In Section 4 we present the Prediction, Recon-
struction and Fault-Masking techniques and combine them into FIP to obtain
the Optimal-Farly-Stopping Faull Masking protocol fort < n/4 (called EsFM4),
Both FIP and ESFM4 reguire exponential communication. Protoco} ESFM4 is used
as an intuitive basis for Ls8: Linear-Size messages protocol fort < n/8 presented
in Section 5. Concluding remarks and open problems are brought in Section 6.

2 Definitions

Names of processors are denoted by small letters (e.g. p, q). Sequences of pro-
cessor names beginning with s (source) and without repetitions are denoted by
small greck letters. For a sequence of processors o processor last(e) denotes the
processor whose name appears tn the last place of a. g denotes the sequence
obtained by concatenation of ¢ to the sequence a.

Generally, all the protocols described below consists of two parts: Information
Erchange and Decision. During Information Exchange each processor constructs
an fnformation Gathering tree denoted by 1G. Every node of 1G is labeled by some
sequence «, where the root node is always labeled by s and if j is not in « then o
is the father of the node labeled aj. Therefore, node « has exactly n ~ || sons.
To every node o a processor may associate a value v drawn from the domain
W. Subscript p denotes local variables and values in processor p. Processor p is
correct if it follows the protocol; otherwise it is faulty. We say that node o is
correct if last(w) 1s correct.

At the beginning of the protocol all 1G trees of correct processors are empty.
At the Init round the source processor (assuming it Is correct} broadcasts its

10.

i1.

12.

13.

14,

15.

16.

184

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382-
401, July 1982.

Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of dis-
tributed algorithms. Journal of Algorithms, 11{3):374~419, September 1990.

Gil Neiger and Mark R, Tuitle. Common knowledge and consistent simultaneous
coordination. In J. van Leeuwen and N. Santoro, editors, Proceedings of the Fourth
International Workshop on Distributed Algorithms, volume 486 of Lecture Notes
on Computer Science, pages 334-352. Springer-Verlag, September 1990. To appear
in Distribuied Computing.

Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of pro-
cessor and communication faults. IEEE Transactions on Software Engineering,
12(3):477-482, March 1986.

Stephen Ponzio. Censensus in the presence of timing uncertainty: Omission and
Byzantine faults. In Proceedings of the Tenth ACM Symposium on Principles of
Distributed Computing, pages 125-138, August 1991,

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems, 1(3):222--238, August 1983.

T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing, 2(2):80-94, 1987. '

140

of &’y sons is equal to the tree value of o, According to the definition of the
resolve function, we can prove, using simple down-counting induction on |af,
starting from |a| = { + 1, that resolve(a) = tree{a). By the protocol, the tree
values of ¢ in the 1G trees of all correct processors are equal. O

Lemma 2. In every run of the FIP protocol there exists a common froniter.

Proof. Consider the 1G tree of an arbitrary correct processor after the 141 round
is completed. This is a balanced tree of height ¢ 4+ 1. Since there are at most ¢
faulty processors, each path has at least one correct node. By Lemma 1 this node
is commeon, hence each path has at least one common node. 0

Theorem 3. The FIP protocol reaches Byzantine Agreement fort < n/3.

Proof. 'If s is correct then Lemma 1 implies that for every correct processor p,
resolve(s,) = tree(sy), hence the protocol satisfies validity. To prove agree-
ment, it can be shown that if there exists a common frontier then the root node
is also common, hence the lemma follows from Lemma 2. O

4 Prediction Reconstruction and Fault-Masking

In this section we assume that t < n/4 and present the prediction, reconstruc-
tion and fault-masking techniques which are integrated into the FIP protocol
to obtain an early stopping protocol called EsFMm4. This is an intermediate pro-
tocol which will be modified once again in the next section to get the linear
protocol.

Reconstruction: If at round |a| + 1 processor p does not receive the value of
node ag (from processor ¢}, then tree(aqy) := tree(n,). It is easy to see that
in this case ¢ is faunlty, since a faulty processor can send arbitrary values, the
protocol tolerates these values as well and its correctness is preserved.
Prediction: The following two prediction rules detect a situation in which the
resolve value v of some node « can be evaluated before the end of round ¢ + 1.
In this case we say that node « is closed with v, and denote it by close(a) = v.

rule 1: If the tree value of more than ﬂ_-glg_l + (t — |a|) of a’s sons is v then
close{ar) 1= v,

rule 2: If more than (at least) 2—'—2‘31 of a’s sons are closed with 1 (with 0,
respectively) then close{(a) := 1 (close(w) := 0 respectively)

If path{c) has a closed node then it is closed, otherwise path(a) is open. For
the time being we assume that the close values are not used and the protocol is
executed without any changes. At the end of every communication round each
processor applies rules 1 and 2 to close as many as possible nodes which are not
on a subtree of a closed node. We now prove that the prediction rules indeed
predict the resolve values of closed nodes:

182

contribution is that, when considering problems whose specifications are inde-
pendent of these actions, the impossibility result does not hold. For cases in
which n < 2¢, we exhibit a hierarchy of translations; the number of rounds used
in each translation depends on the particular values of n and t. In general, the
larger that ¢ is relative to n, the more rounds that are needed to perform the
translation. '

The round-complexities of these translations are all optimal. Thus, our results
give a precise characterization of the relationship between crash and omission
failures. The hierarchy given here is quite different from the one given earlier
for translations from crash to arbitrary failures [2]. In that case, the translations
were all quite different from each other. The translations given here are uniform
in that they have the same structure, varying only in their round complexity.
When translating to arbitrary failures, three translations covered the entire hi-
erarchy. The hierarchy presented here is unbounded (it contains ¢ levels for any
fixed t). Table 1 summarizes this hierarchy of translations. The first column gives
progressively weaker conditions on n and #; the second gives a number of rounds
that is adequate to perform the desired translation (fewer rounds may be neces-
sary if a stronger condition holds). In the weakest case, n = ¢ + 2, t + 1 rounds
are required. Note that ¢ + 1 rounds are always sufficient, because fail-stop fail-
ures [15] can always be simulated in t+ 1 rounds, and they are a more restrictive
type of failure than crash failures.

Condition|Rounds
n > 2t 2
n > 2 3
n>3t2 4
n > 3t/2 b
n>4t/3| 6
n>4t/31 7
n2t+2) t+1

Table 1. Summary of translations

All the translations are efficient in that they generate protocols that do not
require substantially more local computation than the original protocols, In all
cases, if the largest message sent in original protocol is of size b, then the largest
message sent in the translated protocol has size O{(b+ 1)n).

Translations such as those presented in this paper have been developed for
completely asynchronous systems [4] as well as the completely synchronous sys-
tems considered here. Other researchers have studied problems in which there

142

Base-case: d(a)p = 1. In this case o, is closed by rule 1. If close(ap) = v it can
be shown that the majority of op’s sons are correct nodes with tree value
v. Let ¢ be another correct processor. Since for every correct 3 tree(f,) =
tree(f,) the majority of «y sons are correct nodes with tree value v. Since
Lemma 1 implies that for every correct @ resolve(B;) = tree(f,) we get
resolve(ay) = v. Hence node o is common.

Induction step: every prediction of depth greater then one is based on predic-
tions of smaller depth. The complete proof is done in a way similar to the
induction step of Lemma. 6. o

Lemma8. Lel o be a node closed by some correct processor p in round r. Under
this conditions, for every correct processor ¢, path(ay) is closed no later than
the end of round r 4 1.

Proof. For correct last(a) the proof follows immediately from Lemma 4(a). If
last(o) is faulty the proof is by induction on d(«), as follows:

Base-case: d{o), =1 (i.e. r = |o| + 1). Corollary 5 implies that all processors
in « are faulty. In this case, if close{a,) = v then for every correct ¢ node o,
has more then 5—:213[correct sons with tree value v. If path(ay) is open at the
end of round r then Lemma 4 implies that until the end of round » -+ 1 all
correct sons of o, are closed hence the lemma follows from prediction rule
2.

Induction step: Suppose that the lemma holds for all predictions of depth< &
and let a, be a node closed with value v in round r s.t. r— |a| = k. Let g be
a correct processor and suppose (by contradiction) that at the end of round
r+ 1 path(a), is open. Let aj, be a closed son «,. Then aj, is closed in
depth no greater than &k — 1 and by induction hypothesis at the end of round
r+ 1 node «aj, is also closed. Lemma 7 implies that node @j is common
and Lemma 6 implies that for every node £ in 1G tree of correct processor
close(3) = resolve(). Therefore close(aj,) = close(aj,). In particular,
if at the end of round r close(aj,) = v then at the end of round r + 1
close(ej,) = v. Hence by prediction rule 2 at the end of round r + [node
o, also closed with ». Contradiction. O

We now amend the FIP protocol as follows: at the end of every communication
round each processor applies reconstruction to get the values of missing nodes.
Following reconstruction the processor applies prediction to close as many nodes
as possible. Communication rounds are performed as before and at the end of
round { + 1, closed nodes are treated like leaves. The amended protocol is called
FIP(RP), for FIP with reconstruction and predictions. It is obvious that all the
properties proved for FIP hold for FIP(RP) as well.

A BA protocol is early stopping if its time-complexity can be improved when
the actual number of faulty processors is smaller then 1. In the sequel we outline
some further modification to protocol FIP(RP) that yield an early stopping pro-
tocol called Es4. If node «, is closed in round r then starting from round r + 2,
no processor uses the transmitted values of leaves in subtree(a) to determine

180

translation used has round-complexity z = |t/(n — t)| + {£/(n — t)]. (Obviously,
translations with lower round-complexity will also fail.)

Assume for a contradiction that there is a z-round translation 7 from C(n,t)
to O(n,t). We will describe an execution of II, = T (II.) and show that it cannot
simulate a history of II, that meets all three of the above constraints. This will
contradict the existence of the translation. -

Let k = [t/(n — t}|. Note that z = 2k + b, where b is 0 if ¢ is a multiple of
n — t and is 1 otherwise. Define the sets Lo, Ls,...,L.y1 as follows:

Ly = {Pl},
L= {pﬂi e aPn—t}:

Ly; = {Pl’(n—t)+1}$
Laitr = {Pitn—t)+25 - s Pli+1)(n1) }»

Loy = {pk(n-—-t)+1}y and
Lapyr = {Pia(n—t)+2, to ,P(k+1)(n—t)};

if b = 1, we define Lap 2 = {P(k+1)(n——t)-{-1: .+.,Pn}. It is easy to see that none of
the defined sets is empty. (Remember that k = [t/(n — t)|,80 k+1 = [n/(n - t)]
and n < (k -+ 1){n — t); this is a strict inequality if b = 1.) Furthermore, the last
set is always L., regardless of the value of b. Note that Ly N L; = Q if i # j
and [L; ULy | >2n—tforalli,0 <i< 2

Consider the following run of II,,, the translated protocol. No communication
takes place between processors in L; and those in L;, 7 > i+1 in any round i+ 1
or afterward. (Note that this implies that processors outside LyULj never receive
any message from p;.) All processors behave correctly otherwise. Although we
have not identified the faulty processors, it should be clear that this can be a run
in system O(n,t). For example, Ly U Ly might be the set of correct processors
because it contains n - ¢ processors and there is no communication failure among
its members. All missing messages can be accounted for by assuming that the
remaining processors are faulty and fail either to send or to receive {or both).
In fact, any set L; U Ly, 0 € { < 2, could be correct for the same reason.
Thus, what we have described is actually a set of histories, all of which are
indistinguishable to the processors in the system. It is the processors’ inability
to determine the identity of the correct processors that leads to the impossibility
result,

It is clear that processors in I; first learn of p;’s initial state at the end of
round ¢. In particular, processorsin L, do not know p,’s initial state until the
end of round z + 1 (the first round of the second phase) and thus do not know
p1's initial state at the end of the first phase. This fact will be critical to the
proof because it will contradict the following lemma:

144

Lemmal12. (FDR) Let ¢ be o run of ES4 and let p be a correct processor in o.
If p detects that some processor ¢ contradicts at least t + 1 other processors then
p can cleim thal g is faulty.

The next lemma was proved by [2]:

Lemmal3. (FMR) Let o be a run of some synchronous agreement protocol and
suppose that al the end of round r processor p can claim thal another processor,
q, is faulty. Then processor p may pretend that starting at round v+ 1 all values
reported lo it by q are 0, without jeopardizing the correctness of the protocol,

We modify Es4 as follows: in every communication round after collecting
the incoming information and building the next level of the 1G tree (and before
applying prediction) the processors apply CDR, FDR and FMR. For this purpose
each processor maintains contradiction-list which is a list of processor pairs and
faulty-list which is the list of processors. Both are initiated to empty lists and
updated at the end of each communication round. The new protocol is called
Farly Stopping protocol with Feult Masking for ¢ < n/4 and denoted by ESFM4.
It is obvious that Lemma 4 and Lemma 8 also hold for EsFm4.

Theorem 14. The ESFM4 protocel achieves Byzantine Agreement for ¢ < n/4.

For correct p in run o of ESFM4 node «p is corrupted if path(ca,) is open at the
end of round |o} 4 1. Obviously if o, is corrupted then all processors in « are
faulty.

Lemmals. Let o be a run of BSFM4 in which node wp is corrupted. Then p
detects (using FDR,) that lust(c) is faulty not later than the end of round |a|+1.

Proof. The proof is done by induction on |a|.

Base-case: |a| = 1 (l.e. & = 8). If s, is open at the end of the second round
then rule 1 implies that the number of s,’s sons whose tree value is tree(s,)
is not greater than "’T'l + (¢ -~ 1). Since n > 4 .t we get that processor p
recognizes more then ¢ contradictions with processor s and therefore detects
that s is faulty,

Induction step: Suppose that the lemma holds for all 2 s.t. [8] < k and let
|| = k. Since Lemma 4 (a) holds for ESFM4 we get that all the processors
of ¢ are faulty and by induction hypothesis at the end of round || all of
them (except, possibly, lest(a)) are detected by p as faulty. Since ap is
open at the end of round |o| + 1 then from prediction rule 1 follows that
for at least —’"-‘:-2131 — (t — |o]) of &,’s sons the tree values are differ from
tree(a,). Therefore at the end of round |a| -+ 1 processor p recognizes at
least 3'%3-[—t+42- || —1) contradictions to last(a). Hence FDR rule implies
that until the end of round Je| 4 1 p detects that last{a) is faulty. O

Let ¢ be a run of ESFM4 s.t. for every correct g, node o, is corrupted; then we
say that processor last(«) is a delay-causer of round |a|. ‘

178

faulty| > |[N; U Mj.2| = |P — Lj| > n— (n - t) = t for every processor
r € Mj_y. Thus, all processors in Nj..; will have M;_, C faulty by the end
of round j + 1. Now consider a processor r € M;_;. As noted earlier, it has
N; C faulty by the middle of round j + 1. Consider now some processor
s € M; — M;_y C Nj..;. Because it is in IV;_;, & will have M;..2 C faulty by
the end of round j — 1. Thus, in round j + 1, » finds |accuse[s] U fauity, U
faulty| > |faulty, U faulty| > |Mj_2 U N;| > t (as above) and thus adds s to
faulty by that time. This means that, by the end of round j -1, all processors
in M;_, have N; U (M; — M;_1) = N;—1 C faulty. By Lemma 1, all correct
processors are either in M;_y or N;_;. Let C be the one of them containing
the correct processors and let F be the other (its complement). Then {(C, F)
is desired partition.

The desired partition exists in either case, completing the proof. O

The two desired properties are corollaries to the Partition Lemma:

Corollary 4 (Faulty-Recipient). If ¢ does not receive p’s message in round i
and p is a correct processor, them no correct processor will receive a message
from q after round i.

Proof. Suppose that ¢ does not receive p's message in round i and that p is a
correct processor. By the Partition Lemma, there is a partition of P into (C, F)
such that p € C, ¢ € F, all the correct processors are in C, and each processor in
C has F C faulty by the end of the first round of phase ¢ + 1. This means that,
in phase ¢ + 1 and thereafter, all correct processors will refuse messages from g
and from any processor that might relay a message from g.]

Corollary 5 (Faulty-Sender). If ¢ does not receive p’s message in round i and
q is correct, then no correct processor will receive ¢ message from p after round 4.

Proof. Similar to the proof of Corollary 4. a

Lemma 2 shows that the translation always allows correct processors to com-
municate with each other. Corollaries 4 and 5 show that any sufficiently severe
failure manifests itself as a crash failure. Together, these allow us to conclude
that the translation is correct:

Theorem 6. Translation T translates from C(n,t) to O(n,t) in z rounds, where

z=[t/(n=t)] +[t/(n-)] +1.

The formal proof of Theorem 6 requires the construction of the history sim-
ulation function H and a proof of its correctness; given the Partition Lemma,
this is straightforward and omitted. One note, however, is warranted. This re-
gards how these translations circumvent the impossibility results of Neiger and
Toueg [11]. Their definition required that the history simulation function H cor-
rectly simulate the states of all processors. We require only that the state of
correct processors be correctly simulated. In our construction of H, the states of

146

Proof. Lemma 4 (a) implies that all processors in & except last(a) are faulty,
hence at least n — (¢ — |a| + 1) of p’s sons are correct. Since last(a) is correct,
the tree values of all correct sons of o, are equal to tree(a,). Hence tree(a,) is
the tree value of at least n —2-¢+|a|— 1 of &, s sons chosen from the set S. Since

|af > 1 and since n > 6 -t we get that there exist more than ”—“2[51 + (¢ — |a])
nodes 8 s.t. 8 € § and tree(§) = tree(er). Thus the claim follows by prediction
rule 1. i

The first two rounds of Ls8& are exactly like those of ESFM4. Starting from
round 3 every processor that does not stop during the first two rounds performs
a procedure called reconstructed traversal (described below) for at most t —2
extra rounds. If some correct processor p does not halt within ¢t + 1 rounds then
it applies resolve to 1G,.

158 {at processor p):
1. first two rounds: like in ESFM4;
2. for 3 <r <t+4 1 perform reconstructed traversal,
3. apply resolve to 1G,.

At any round of the reconstructed traversal, every correct processor p
corresponds to some node e that is called the current node of p and denocted by
current(p); at the beginning of the traversal current(p) := s. Let p be a correct
processor and assume that at some round current(p) = «. In this case oy, is new
if the tree values of a, sons were not broadcast by p. We say that node g, is
almost full if at least n — |3| — ¢ sons of 3, have some tree values, and node g,
is full if all of its sons have tree values. As we shell see, when current(p) = «,,
each 3, s.t. |8] < |e} is full or closed.

In L$8 every processor p maintains 1G,, faulty-list, and coniradiction-list,
which are used in BSFM4 and three additional data structures: reported-lisi,,
curreni-list, and halted-listy. In reported-fist, p stores all the incoming messages,
halted-list, 13 a list of processors that p claims as being halted (i.e. they stopped
assuming they are correct). For every processor g s.t. ¢ ¢ (halted-list, U faully-
list,), processor p chooses some node B, in current-fist,, to be the current node of
g with respect to p (i.e. current(q), = f). All the above structures are initiated to
empty. We say that processor ¢ is at least as fast as p if current(q), > current(p)
or if ¢ € (halted-list, U faulty-listy).

Each round of the reconstructed traversal at p consists of three parts: (i)
if orp is new then p broadeasts the tree values of every son of a,; (ii) p collects all
the incoming messages and updates the appropriate data structures; (iii) at the
end of the round p counts the number of processors that are at least as fast as
p; In case that there are at least n — ¢ such processors p performs the traverse
procedure.

reconstructed traversal:
1. If & = curreni(p) is new then broadcast the tree values of every son of «y,
otherwise broadcast special beep signal;

176

Lemmal. No correct processor ever belongs to the faulty set of another correct
Processor.

Proof. The proof is by induction on the number of rounds executed. The base
case is trivial because all processors have empty faulty sets initially, Now assume
that the lemma holds through round ¢. Suppose that some correct processor p
adds another processor ¢ to its faulty set in round ¢ + 1. This can happen for
one of two reasons:

— p does not receive a message from g. In this case, ¢ must have omitted to
send a message and is thus faulty.

— p found |accuse[q] U faulty, U faulty| > t. Since there are only ¢ faulty pro-
cessors and, by induction, all elements of p’s set. faulty are faulty, there must
be at least one correct processor » € accuselg] U faulty,. If » € accuse[g],
then g was in »’s feulty at the end of round ¢, so ¢ is faulty by induction. If
r € faully,, then r was in ¢’s faulty at the end of round i and, again, g is
faulty.

In all cases, q is faulty, so the lemma holds. O

The following lemma shows that the translation does not inhibit normal
communication between correct processors.

Lemma2. If a correct processor p sends m al the beginning of a phase, every
correct processor g simulales the receipt of m at the end of that phase,

Proof. In the first round of the phase, p sends an array msgs to ¢ with msgs{p| =
m. Since both p and ¢ are correct, ¢ receives this array. By Lemma 1, p cannot
be in ¢’s set faulty. Thus, g sets magsp] = m at the end of this round and thus
simulates the receipt of m from p at the end of the phase. a

The following lemma. is the core of the correctness of proof of the translation.
It shows that, if there are failures sufficient to prevent two processors from
communicating in a given phase, then the faulty sets of all processors will cause
a “partition” to occur in the next phase. One of the two processors is faulty and
will be separated from the correct processors; to them, it will appear to crash.
This is sufficient to simulate crash failures.

Lemma 3 (Partition Lemma). For any two processors p and g, if q does not
simulate the receipt of p’s message at the end phase i, then there is a partition
of P into two sels C and F such thai

1

all correct processors are in C,

— p and q are not both in C,

— every v € C has F C faulty by the end of the first round of phasei 41, and
— every 8 € F has C C faulty by the end of the first round of phase i + 1.

148

tree(ojqy) = tree(ayp);
end;
2. For every ajp son of o apply CDR and FDR;
3. For every ¢ detected as faulty at step 2 do
for every § > a s.t. ¢ € B and path(3,) is open do tree(fBq,) := 0;
4. If ap is not new and at least n — ¢ processors are at least as fast as p
then begin
Apply prediction rule 1 to each node ajy;
If node o, remains open then
for every ¢ s.t. ¢ not in oj and wj¢, €1G, do
tree(ajqp) = 0;
Apply prediction rules 1 and 2 to subtree(a,);
end;
5. Remove all the descendants of closed nodes from subtree(a,).

Now we can show why a processor performs update-tree twice. Denote the
father node of o by f(«). Suppose that p traverses node a, before some correct
Jj broadcast tree(w«;). Consider the situation when p leaves f(a),. In this case
node « is full but not closed and tree{a;) = 0. Since at that time there are at
least n — ¢ processors that are at least as fast as p then there are at least n—2-4
correct processors that traversed f(a) or halted. When processor j reaches f(«)
it performs update-tree during which it recognizes that last(«) is faulty. Hence
if j broadcast tree(w;) the broadcast value is 0.

5.2 Correctness Proof and Complexity

Let o be a run of Ls8 and let p be a correct processor in o. Per(r), is the set of
communication rounds during which the rth level of 1G, is built (i.e. level, = r).
By T(p,r) we denote the 1G, tree at the end of Per(r),. For every correct
processor p we define level, = |a| 4+ 2 were o is current(p). To make our proof
simpler we start with a modified protocol, denoted by L.s8°. In Ls8 each correct
processor p that does not halt in traverse builds tree of height ¢ 4+ 1 (and then
applies resolve). Later we shell see that in LS8’ processors halt within at most
t + 2 rounds. Afterwards we prove that Ls8 indeed reaches BA for ¢ < n/8 using
optimal time and messages of linear size. We assume that all the structures of
158 are defined for LS8’

Lemmal9. Lel o be a run of LS8 and let p be an arbilrary correct processor.
Then the following claims hold:

a. If |o| < r and last{w) is correct then path(ap) is closed in T(p,v);

b. If j is correct and path(ca;) is closed in T(j,r — 1) then path(ap) is closed in
T(p, 1"),’

c. Let j be a correct processor and suppose that in T(j,r — 1) close(a;) = v
when path(ap) in T(p,r — 1) is open. Then somewhere in Per(r), node ap
ts closed with v;

174

5 A Hierarchy of Translations

This section shows a hierarchy of translations from crash to omission failures.
It exhibits a canonical translation, which translates from C(n,t) to O(n,t) in z
rounds, where z = [¢t/(n —)] + [t/(n — £)] + 1. Note that the larger the ratio
t/(n—t) (i.e., the more failures), the higher the round-complexity. Section 6 will
show that each of these translations is optimal with respect to the combined
measures of fault-tolerance and round-complexity.

The translation is given in Fig. 2. In each phase, each processor maintains
in msgs the array of messages for that phase of which it is aware; initially, it
is aware only of its own message. During the z rounds of a phase, processors
exchange these arrays and other information; they use these arrays to decide
which messages to simulate the receipt of at the end of a phase (see below for
more details). The redundant communication given is needed to mask the more
severe omission failures and make them appear to be only crash failures.

Consider a message to be sent by processor p to processor ¢ in round ¢. In
a system with omission failures, if ¢ does not receive this message in round i,
then either p omitted to send or ¢ omitted to receive. To make omission failures
appear as crash failures, the faulty processor must appear to crash by the end
of round ¢. The translation enforces the following informal properties:

1. [Faurty-RECIPIENT] If ¢ does not receive p's message in round i and p is
a correct processor, then no correct processor will receive a message from ¢
after round .

2. [FAULTY-SENDER] If ¢ does not receive p’s message in round i and g is cor-
rect, then no correct processor will receive a message from p after round 4.

In either case, the faulty processor appears to crash in round ¢ because ne correct
processor will receive from it after that round.

Each processor keeps track of the set of processors it considers to be faulty
in the variable faulty. As Lemma 1 will show, all processors in the faulty set of a
correct processor are indeed faulty. A processor includes its set faulty with every
message that it sends; it disregards messages received directly from processors
in faulty and does not send messages to those processors. However, a processor
may simulate (at the end of a phase) the receipt of messages from processors in
feulty if these messages are relayed to it by other processors,

Each processor p maintains its set feulty as follows. It adds to it any other
processor from which it fails to receive a message. In addition, it maintains for
each processor g a set accuse[g]. This contains the set of other processors that
“accuse” ¢ of being faulty. If this set gets sufficiently large, then p adds ¢ to
faulty. Also, p will add ¢ to faulty if it believes that g is “accusing” too many
other processors. Specifically if the union of the set p believes to be faulty, the
set g claims is faulty, and the set accusing g of being faulty has size greater than
t, then p and ¢ cannot both be correct and p places g in its set faulty. Note that,
if ¢ is in p’s faulty set at the end of some round i, then p will be in ¢’s faulty
set by the middle of round ¢ + 1; this is because a processor refuses to send to
members of its faulty set.

150

is correct then Lemma 19 (add) implies that in ¢ + 1th period both p and ¢
closes node o and close(a,) = close(ay). If last(a) is faulty Lemma 19 (a)
implies that { first processors in a are faulty. Hence all the sons of «, and oy
are correct, therefore their tree values in 1G, and 1G4 are equal and obviously
the final values of a are also equal. By down-counting induction on |a| we
can prove that the final value of s, is equal to the final (resolved or closed)
value of s,. Hence we get the agreement. O

Let ¢ be a run of Ls8’ and let & be the smallest node s.t. at round » of &
current(p) = a for some correct p. Then we denote m” = o. By M, we denote
the set of all such nodes, and by C, the set of all nodes that during the run o
were eurrent for the correct processars.

Lemma21. For every run ¢ of Ls8’ m” = m' 1.

Proof. Tf all the processors with current on m"~! halt before round r the lemma
holds. Otherwise let p be a correct processor s.t. in round r — 1 ecurrent(p) =

m’~ 1. In the end of round » — 1 p recognizes at least n — ¢ processors are at
least as fast as him, and therefore p performs traverse. Hence if p does not halt
before round # then it begins round » with current(p) > m"~ O

Lemma 22, Let o be a run of LS8, p correct in ¢ and o € Co. Then p delects
that last(@) is faully not later then the round in which p finishes update-tree

at f(a)p.

Proof. If @ € C, then for some correct j path({a;) is not closed at 7'(j, laf). In this
case Lemma 19 (b) implies that path(a,) is open in T'(p, |a|— 1), hence at some
point correct(p) = f(a),. Processor p does not leave f(a) without performing
update-tree at f(a),. Since n > 8 -1 and since j does not succeed to close «;
immediately after o; becomes full, it is not hard to see that when ap becomes
almost full in 1G, processor p detects that last(e) is faulty. D

Lemma 23. Let ¢ be ¢ run of LS8, Then the following holds:

a. If 3> a 8.t o € C, and last(B) = last(ar) then for every correct p path(fp)
is closed notl later than the round in which p is first visiting ¢ node thal
is greater than f(B3). In the case that f(B) becomes p's current node, B3, is
closed with 0.

b. For every o, 8 € C, last(a} # last(B).

Proof. Lemma 22 implies that each correct processor that reports tree(S) re-
ports for it a value of 0. On the other hand tree values of 3,’s sons that are
accepted by reconstruction are also 0. Since n > 8 - ¢, the above implies that
if path(B,) is open when p reaches 8 then when node 3, becomes almost full
close(f,) is set to 0. Lemma 23 (b) is an easy corollary from part (a). 0

Lemma 24. In each run of LS8’ every correct processor halt within at most f+2
rounds. '

172

e it receives no messages in round i.:
Vg € P[R(icspiq) = L;

— or p crashes after sending:
¢ it sends correctly in round i,:

Vg € P[${ic, Py q) = fin(ic, P, Qic, p))]; and

¢ it receives from each processor ¢ either what ¢ sent or nothing at all:

Vg € P[R{ic,p,q) = $(ics @, P) V R(ic, 2, ¢) = L]
In either case, p takes no action after the crash:

— it sends and receives no messages: Vi > i V¢ € P[s(i,p,¢) = R(i,p,q) = 1],
and .
— it makes no state transitions: Vi > i.[Q(,p) = Q{i.,p)].

The system C(n,t) corresponds to the set of histories in which ¢ processors
are subject only to crash failures and all other processors are correct. That is,
H € C(n,t) if and only if P can be partitioned into sets C' and F such that
C = Correct(H), |F| < t, and

Vp € F i, € Blp commits a crash failure in round i, of H].

3.3 Omission Failures

A more complex type of failure, called an omission failure, occurs if a processor
intermittently fails to send and receive messages [13]. Such failures have also
been called general omission failures. Processor p may commit such failures in
history H = {IT, Q,s, R} if it always makes correct state transitions, always sends
to each processor what its protocol specifies or nothing at all, and always receives
what was sent to it or nothing at all:

—VYicZVge€ ’P[S(i,P,Q) = f—‘t?r(iapaQ(irp)) v s(i:P1Q) = -L]; and
- VicZvge ’p[n(iaPaQ) = S(‘i,q,p) v R(i:paQ) = J-]

Let O(n,t) be the set of histories in which all processors are correct except for
t, which are subject to omission failures. (Note that omission failures a strictly
more severe than crash failures; a processor effectively crashes if it omits to send
and receive all messages from some point onward.)

4 Translations between Systems with Failures

This section formally defines the concept of a translation from C(n,) to O(n,t).
The definition of translation used here is an adaptation of a more general defi-
nition used in other papers {2,11].

152

References

10,

11.

12.

13.

14.

Bar-Noy, A., Dolev, D.: Families of Consensus Algorithms. Proc. Aegean Workshop
on Computing 3 (1988) 380-390

. Bar-Noy, A., Dadlev, D., Dwork, C., Strong, H.R.: Shifting Gears to Expedite Byzan-

tine Agreement. Proc. Annual ACM Symposium on Principles of Distributed Com-
puting 6 (1987) 42-51

. Berman, P., Garay, J.: Optimal Early Stopping in Distributed Consensus. IBM

Research Report RC 16746 (1990}

Berman, .P, Garay, J.: Distributed Consensus with » = 3« (1 4+ ¢} Processors.
Proc. International Workshop on Distributed Algorithms, LNCS, Springer-Verlag
5 (1991)

. Berman, P., Garay, I., Perry, K.J.: Towards Optimal Distributed Consensus. Proc.

Symposium on Foundation of Computer Science 30 (1989) 410-415

. Coan, B.: Efficient Agreement using Fault Diagnosis. Proc. Allerton Conference on

Communication, Control and Computing 26 (1988) 663-672

Dolev, D., Reischuk, R.: Bounds of Information Exchange for Byzantine Agree-
ment. JACM 32 1985 191-204

Dolev, D., Reischuk, R., Strong, H.R.: Early Stopping in Byzantine Agreement.
JACM 37 (1990) 720-741

Fisher, M., Lynch, N.: A Lower Bound for the Time to Assure Interactive Consis-
tency. Information Processing Letiers 14:4 (1982) 183-186

Hadzilacos, V., Halpern, J.: Message-Optimal Protocols for Byzantine Agreement.
Proc. Annual ACM Symposium on Principles of Distributed Computing 10 (1991)
309-324

Moses, Y., Waarts, O.: Coordinated Traversal; #4+1-Round Byzantine Agreement in
Polinomial Time. Proc. Symposium on Foundation of Computer Science 29 (1988)
246-255

Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults.
JACM 27:2 (1980) 228-234

Waarts, O.: Coordinated Traversal: Byzaniine Agreement in Polynomial Time.
M.Sc. Thesis, Weizmann Institute of Science, Rehovot, Israel (1988)

Zamsky, A.: New Algorithms for Agreement Problem in Synchronous Distributed
Networks. M.Sc. Thesis, (in Hebrew), Technion, Haifa, Israel (1992)

170

Note that the following assumptions are made about protocols:

— they are “loquacious”; all processors send some message in every round;
they require each processor to broadcast the same message to all (in any
given round);

their state transition functions depend solely on the messages that a proces-
sor has just received and not its current state; and

they never have processors “halt.”

}

These assumptions are made only to simplify the exposition and do not restrict
the applicability of the results.

2.3 Histories and Problem Specifications

Histories are defined to describe the executions of a distributed system. Each
history includes the following:

— the protocol being run by the processors,*

— the states through which the processors pass,
the messages that the processors send, and
— the messages that the processors receive.

Let Q(i,p) be the state in which processor p begins round i. Let $(i,p, ¢) be the
message that p sends to ¢ in round 7 or L if p sends no message to ¢. Let R(,p, ¢)
be the message that p receives from ¢ in round ¢ or L if p does not receive a
message from ¢.> H = (I7,Q,s,R) is a history of protocol IT.

A system is identified with the set of all histories (of all protocols) in that
system. Thus, a system can be specified by a set of histories. A system can also
be defined by giving the properties that its histories must satisfy. If S is a system
and H = (IT,Q,s,R) € 5, then H is a history of IT running in S.

Protocols are run to solve particular problems. Formally, such problems can
be specified by predicates on histories. Such a predicate, called a specification,
distinguishes histories that solve the problem from those that do not. For ex-
ample, the serializability problem in distributed databases can be specified by a
predicate X' that is satisfied exactly by those histories of the database in which
transactions are serializable. Protocol IT solves problem with specification X' (or
solves X) in system S if all executions of IT in § satisfy X,

The solutions to many problems are not concerned with the behavior of the
faulty processors. For example, the Byzantine Generals problem requires only
that all correct processors reach agreement [10]. The specification of such a prob-
lem is failure-insensitive. Formally, a specification X is failure-insensitive if the
following is true: if some history H, satisfies ' and Hy differs from H; only with
respect to the behavior (state and message histories) of the faulty processors

* Given any history H we want to be able to identify incorrect behavior in H; this
requires that H include the protocol IT that processors should be following.

® Because of failures, the states and messages specified by IT may be different from
those indicated by Q and s, and R(¢,p, ¢} need not equal s{i, ¢, p); see Section 3.

154

crashes will occur), use low redundancy, and possibly suffer occasional catas-
trophic results, or to assume the worst (i.e., all failures are Byzantine) and pay
a high cost in processors in order to tolerate rare events.

In this paper, we propose a range of failure models that allows a mix of crash
and Byzantine failures. At extremes of the range, the model turns into either
the pure crash fault or pure Byzantine models. Within this range, we examine
two problems that lie at the core of distributed computing: performing reliable
broadcast and achieving consensus.

1.1 Comparison with Previous Results

The Agreement problems (i.e., Byzantine Generals and Consensus) [8, 10] intro-
duced a model in which the behavior of a faulty processor could be “Byzantine”
{i.e., not restricted in any way), even to the exteni of giving the impression
that faulty processors were colluding to foil agreement. In this pure Byzantine
model, it was shown that the Agreement problems admitted solutions if and only
if n, the total number of processors, exceeded three times ¢, the upper bound
on number of faulty processors. A less restricted model in which processors fail
only by halting (i.e., crash failures) has also been used to study these problems
and several protocols requiring only n > ¢ have been found (7).

It has been recognized that processors fail in ways that are less restrictive
than crashing and more restrictive than acting arbitrarily. A “send omission”
model in which processors can fail either by halting or failing to send some mes-
sages was proposed by Hadzilacos [5] as a model of intermediate power. This
model was subsequently made even less restrictive by permitting faulty proces-
sors the additional power of arbitrarily failing to receive messages [11]. In both
these models, Agreement protocols were presented that only required n > ¢.
However, the failure types admitted in these weaker models of failure are still
considered “benign” in the sense that any message sent by a processor is correct
relative to the protocol and the processors state. In contrast, the messages sent
by a faulty processor in the Byzantine model is in no way constrained.

More recent work has provided mechanisms that restrict the behavior of
faulty processors in the Byzantine model [13, 9, 1]. Still, these mechanisms re-
quire n > 3t and lower bounds have been established [1] that show that such

mechanisms multiply the running time of algorithms designed for the weaker
models.

1.2 OQur Results

One contribution of this paper is the introduction of a new family of models
of failure in distributed computing. The new models permit some processors
to behave in an unrestricted Byzantine manner but do not require the high
processor redundancy of the pure Byzantine model. In contrast to all the previous
models, the new models that are introduced in this paper are the only non-
authenticated ones to admit solutions to the Agreement Problems for n < 3¢
processors in the presence of even one Byzantine failure.

168

Most translations require simulating one round of communication of the orig-
inal algorithm by some fixed number of rounds in the new algorithm. This num-
ber is the translation’s round-complexity, Some translations are correct only if no
more than a certain fraction of processors may fail. Typically, the foult-tolerance
of an algerithm or of a translation is measured by comparing n (the total num-
ber of processors in the system) to ¢ (the number of failures tolerated). If the
requirements of a particular translation between two types of failures are neces-
sary, then this indicates that there is a certain “separation” between these two
types failures. For example, Neiger and Toueg showed that any translation from
crash to omission failures requires that a majority of processors remain correct
{n > 2t); this indicated a fundamental difference between these two systems that
has since been studied elsewhere [3,12].

This paper explores translations from crash to omission failures in syn-
chronous systems and circumvents the fault-tolerance requirement of Neiger and
Toueg by refining the class of problems to which these translations apply. Specif-
ically, the proof that n > 2t is required for such translations appealed to a prob-
lem for which the states of faulty processors was important; such problems cannot
typically be solved in systems with general omission failuresif n < 2¢ [3,12]. How-
ever, the solutions to many problems considered for distributed fault-tolerance
do not depend on the states (or actions) of the faulty processors. The results of
this paper apply to this broad class of prablems.

This paper presents a hierarchy of translations, only the first of which requires
n > 2t. These vary with respect to their fault-tolerance and round-complexity,
showing a tight trade-off between the two measures. Each is optimal in the sense
that it uses the minimum number of rounds necessary for a given fault-tolerance.
Thus, we provide not only a series of translations but also a series of matching
impossibility results. Specifically, we give a function z of » and ¢ and show that, if
up to t of the n processors in the system may fail, then there is a translation from
crash to omission failures that requires z(n,t) + 1 rounds to simulate one round
and that there is no translation that requires only z(n,t) rounds. The function
is z(n,t) = [t/(n—1t)] + [t/(n —t)]. In the cases where n > 2¢, this gives a
translation with exactly the round-complexity of that of Neiger and Toueg: two
rounds, This hierarchy of translations is more complex than the one previously
discovered between crash and arbitrary failures [2]. In that case, there were three
possible translations. The hierarchy presented here is unbounded. Thus, our
results greatly improve the understanding of the relationship between crash and
omission failures and may lead to the development of improved fault-tolerant
algorithms for the two systems.

2 Definitions, Assumptions, and Notation

This paper considers distributed systems in which computation proceeds in syn-
chronous rounds. This section defines a formal model of such a system. This
model is an adaptation of that used by Neiger and Toueg [11].

156

— Agreement: The final values of non-faulty processors are equal.
and a Validity condition. The usual Validity Condition:

— Strong Validity: If the initial value of at least n — ¢ non-faulty processors is
equal to v, then the final value is v.

gives rise to the “strong” Consensus Problem. That is, no matter what failures
occur, if all non-faulty processors have the same initial value, then that value is
the final value. The Weak Consensus Problem [6] uses the weaker condition:

~ Weak Validity: If the initial value of at least n non-faulty processors (i.e., no
failures occur) is equal to v, then the final value is v.

Weak Validity restricts the final value only in the case of failure-free executions.
We define the Frangible Consensus Problem to uge a Validity condition lying
between the other two:

— Frangible Validity: If the initial value of at least n — b non-faulty processors
is equal to w, then the final value is v.

The motivation behind Frangible Validity is that if the non-Byzantine processors,
including the ones that subsequently fail by crashing, begin with the same initial
value, then that value must be the final value as well.

3 Lower Bounds

In this section we examine lower bounds in the new failure models. We establish
a necessary relationship among 7,7 and b if the Agreement Problems are to be
solvable. A (trivial} lower bound on the time to reach agreement is also stated.

Theorem 1 Consensus is achievable in the model FF(n,t,b) only if n > t+2.b.

Proof [Sketch} To the contrary, suppose Consensus were achievable with n <
t+2-b. Then consider the following failure scenario: Of the ¢ faulty processors,
some number ¢ are initially crashed (and therefore do not participate in the
protocol) and the remaining b = ¢ — ¢ faulty processors fail in a Byzantine
manner. Any Consensus protocol for the participating processors must be a
protocol that achieves consensus among n’' = n—c processors while being resilient
to b Byzantine failures. By the results of Lamport, Shostak, and Pease [8] a
Consensus protocol that tolerates this number of Byzantine failures is possible if
and only if »' > 3 b. But this condition implies that n > ¢+ 2 b, contradicting
the assumption on . |

The lower bound on time required to achieve Consensus in the new model
follows from the lower bound in the crash model [5] and is stated without proof.

Theorem 2 A protocol to achieve Consensus in the model FF(n,t,b) requires
et least (t + 1) rounds of communication in some runs.

164

2. If the King of phase K is non-faulty all non-faulty processors will end phase
K with the same value of V.
The proof is similar to that of Lemma 4. By fact 1, all non-faulty processors
will halt by phase K + 1 provided that no more than b processors fail.

3. If the King of phase K is faulty and the first non-faulty processor p halts in

phase K, then all non-faulty processors end phase K with the same value of

V. ‘
By inspection of the code’s stopping condition, p halts only if at the end of

phase K, V;, # 2,D[V,]p, > n — b and D[2], < b. Since at most ¢ processors

are faulty, this implies that for all non-faulty ¢, at the end of phase K,

D[Vyly 2 n — b —t > b. Moreover, since the values are sent by Unicast, by

Lemma 2, Df2]; < b. By inspection of the code, this implies that all non-

faulty ¢ ignore the King's Broadcast of phase K and have V; = V, at the

end of phase K.

By fact 1, all non-faulty processors will halt by phase K + 1 provided that
no more than b processors fail.

Taken together, the above facts imply that if no more than f < b failures
occur, all non-faulty processors reach agreement and halt by phase f +2. 1

8 Discussion

We have presented a new model of failure for distributed computing and demon-
strated protocols that solve the Agreement Problems in that model. The attrac-
tiveness of the model is that it allows some processors to fail in an unrestricted
manner while not incurring the high redundancy required in a model of pure
Byzantine failures. Since experience shows that failures worse than processor
crashes do occur, the new model is closer to reality than either the pure crash
or pure Byzantine models.

The new failure models introduced in this paper necessitate types of rea-
soning different from that commonly employed in either the pure crash or pure .
Byzantine models of failure. For example, the technique of forcing a processor
to repeat an action in the presence of witnesges contributes little in either of the
pure models but proves useful in the new model, as illustrated by the Unicast
protocol of Figure 2 and its proof.

This extended abstract focussed on introducing a new model and showing
that important problems could be solved within it. Thus, our protocols em-
phasized simplicity over efficiency. Our protocol without early-stopping requires
3(t+1) rounds (when Unicast is replaced by a simple send(V') to all processors)
and single-bit messages; we also presented a simple extension that was able to
stop early under certain conditions. In the full paper we address the issues of
efficiency and early-stopping in greater generality.

158

processor p to accept value v from processor g, we can require not only that there
be a sufficient number 7' (usually equal to n — t) of witnesses to g having sent v
but also no more than b witnesses to any other value. Thus, a quorum of at least
b + 1 processors can “veto” v. This is in contrast to several existing protocols,
e.g., [9, 13, 12], that only require a minimum number of positive witnesses.

In order to prevent Byzantine processors from vetoing the actions of non-
faulty processors, it is necessary that a veto quorum include at least one non-
Byzantine processor. But, if we tried to implement the veto in the pure Byzantine
model with the most common value of T', i.e., n — ¢, we would discover that the
existence of T positive witnesses necessarily precludes the existence of a veto
quorum. Thus, the veto is redundant in the pure models. Only in the Flexible
Failure models, e.g., FF(n,t,b) where t > b > 0, is it possible to simultaneously
have both n — ¢ positive witnesses and a veto quorum of size at least b + 1.

Use of the veto technique is illustrated in the MakeUnique protocol of Figure
1 which implements a form of Crusader Agreement [3]. Each processor simulta-
neously executes MakelUnique, supplying its current value of the binary-valued
variable V. MakeUnique utilizes the veto technique to ensure that all processors
that accept a value accept the same value, but some processors may not accept
any value (indicated by “accepting” the value 2). In the sequel, the value of a
variable local to processor ¢ will be denoted by a subscript, e.g., Vi denotes the
value of processor i’s V' variable.

Lemma 1 If p,q are non-foulty processors such that, in MakeUnique, p assigns
v#21toV, and q assigns w £ 2 to V,, then v = w.

Proof [Sketch| Since of the at least » — ¢ non-faulty processors, there is some
value that is sent in MakeUnique by the majority of them and [(n — £)/2] > b.
Thus, if the majority sent v, no non-faulty processor could set V to # at the end
of Universal Exchange 1. |

MakeUnique(V):
send(V) to all processors;
C[0] := number of 0s received;
C{l] := number of 1’s received;
if ClOlZ2n—tAC[l}<bthen V :=(
elseif Cll] > n —tAC[0] €bthen V :=1
else V :=2
£i;

Fig. 1. MakeUniqueProtocol for processor 0 < i < n.

162

In Universal Exchange 2, the majority of non-faulty processors either sends
Vp or 2. But by assumption D[2], < bso the majority of non-faulty processors
did not send 2 in Universal Exchange 2. Therefore every non-faulty processor
g has D[Vp]; > [(n ~ £)/2] > band V; = V,, at the end of Universal Exchange
2. In particular, processor g, the King of phase g has V, = V, at the end of
Universal Exchange 2.

Therefore, any non-faulty processor that does not ignore the King’s Broad-
cast of phase g ends the phase with the same value of V as any non-faulty
processor that does ignore the phase’s King,

By Lemma 3, no non-faulty processor changes its value of V subsequent to phase
g 1

Note that the above proof does not use any of the special properties of the
Unicast protocol and would, in fact, remain true even if Unicast was replaced
by “send(V') to all processors” and where every message received was accepted.
Doing so would save 2 rounds per phase. We have chosen to express the algorithm
in the manner we have so that “early-stopping” may be easily added, as discussed
in a subsequent section.

Theorem 4 (Correctness) The protocol of Figure 3 solves the Frangible Con-
sensus problem forn >t+2-5.

Proof The Agreement property follows from Lemma 4 and Frangible Va-
lidity follows from Lemma 3. 1

6 Protocols for the Strong Agreement Problems

We now demonstrate how a protocol for Frangible Consensus can be used to
derive protocols for the Agreement problems with the Strong Validity condition.
This shows that the “strong” variants of the Agreement problems are solvable
in our new models.

In the Byzantine Generals Problem [8], a distinguished processor (called the
General) needs to broadcast a value subject to Agreement and Strong Validity
conditions similar to those described for the Consensus Problem in Section 2.
That is, all non-faulty processors must agree on the value broadcast by the
General and, if the General is non-faulty, the agreed-upon value is the one chosen
by the General,

Given a protocol that solves the Frangible Consensus Problem in FF(n,t,b),
a protocol that solves the Byzantine Generals Problem in FF(n, t,b) is obtained
as follows:

1. In round 1, the General sends the value it wishes to broadcast to all proces-
sors including itself.

2. The processors subsequently execute the Frangible Consensus Protocol using
the value received from the General in round 1 (or 0 if no value was received)
as the initial value,

160

Unicast(V,D}:
send(V") to all processors ;

for j:=0ton—1de
if receive w from processor j then
send({w, j, 1)) to all processors ;
send((w, j,2}) to all processors
fi;

forl :=0to2do
E{l, j] := number of {, j,1)’s received;

od;

if Fl0,5] > n—tAE[L,j] <bA E[2,j] < b then accept({0,})
elseif F[l,j] >n~—tAE[0,j] £bAE[2,j] <b then accept((l,))
elseit F[2,j] > n—tAE[0,j] <bA E[1,j] <b then accept({2,j})
£i;

od;

D[0] := number of 0's accepted;
D[1] := number of 1's accepted;
D[2] := number of 2's accepted;

Fig. 2. Unicast Protocol for processor 0 <4 < n,

the computation proceeds in phases, each of which has a processor designated
as “phase king.” Each phase K consists of 3 rounds of communication. During
the first two rounds of a phase, all processors communicate with cne another; in
the final round only processor K (the king) sends messages.

In the final statement of the figure, there is the notation DecidedAction.
This notation is merely a place-hold for either of two statements: skip or halt.

‘We now sketch a proof of correctness of the protocol. In the sequel, assume
that the DecidedAction is skip. As a preliminary step, we show that if all non-
Byzantine processors begin a phase with the same value of V, then all non-faulty
processors end the phase with V unchanged.

Lemma 3 (Persistence) If there is a v such that for each non-Byzantine pro-
cessor p, V, = v at the beginning of a phase, then at the end of the phase V; = v
for each non-faulty processor q.

Proof [Sketch] Observe that during Universal Exchange 1, each of the at least
n—t non-faulty processors send v and only the Byzantine processors send a value
other than v. By inspection of the code of MakeUnique, at the end of Universal
Exchange 1, V = v for each non-faulty processor. Similarly by inspection of the

F{l,5] := number of processors from which both (I, 4,1) and {},j,2) was received;

160

Unicast(V,D}:
send(V'} to all processors ;

for j :=0ton—1do
if receive w from processor j then
send((w, j, 1}) to all processors ;
send({w, j,2)) to all processors
£i;

foxrl:=m(0to2do
E[l, j] := number of (I, j,1)’s received;

od;

if F[0,7] > n—tAE[1,] £bAE[2,5] < b then accept ({0, 7))
elseif F[1,j] > n—tAE[0,j] <bA E[2,5] < b then accept({1,7})
elseif F{2,7] > n—tAE[0,j] <bAE[l,j] <b then accept({(2,5))
£i;

od;

D[0] := number of 0’s accepted;
D[1] := number of 1's accepted;
D[2] := number of 2's accepted;

Fig. 2. Unicast Protocol for processor 0 <i < n.

the computation proceeds in phases, each of which has a processor designated
as “phase king.” Each phase K consists of 3 rounds of communication. During
the first two rounds of a phase, all processors communicate with one another; in
the final round only processor K (the king) sends messages.

In the final statement of the figure, there is the notation DecidedAction.
This notation is merely a place-hold for either of two statements: skip or halt.

We now sketch a proof of correctness of the protocol. In the sequel, assume
that the DecidedAction is skip. As a preliminary step, we show that if all non-
Byzantine processors begin a phase with the same value of V', then all non-faulty
processors end the phase with V unchanged.

Lemma 3 (Persistence) If there is ¢ v such that for each non-Byzantine pro-
cessor p, Vy, = v at the beginning of o phase, then at the end of the phase Vg = v
far each non-faulty processor q.

Proof [Sketch] Observe that during Universal Exchange 1, each of the at least
n—t non-faulty processors send v and only the Byzantine processors send a value
other than v. By inspection of the code of MakeUnique, at the end of Universal
Exchange 1, V = v for each non-faulty processor. Similarly by inspection of the

Fl,j] := number of processors from which both {I,7,1) and (I, 5, 2) was received;

162

In Universal Exchange 2, the majority of non-faulty processors either sends
V5 or 2. But by assumption D[2], < bso the majority of non-faulty processors
did not send 2 in Universal Exchange 2. Therefore every non-faulty processor
g has D[Vp], > [(n — t)/2] > band V4 = V;, at the end of Universal Exchange
2. In particular, processor g, the King of phase g has V, = V,, at the end of
Universal Exchange 2.

Therefore, any non-faulty processor that does not ignore the King’s Broad-
cast of phase g ends the phase with the same value of V' as any non-faulty
processor that does ignore the phase’s King.

By Lemma 3, no non-faulty processor changes its value of ¥ subsequent to phase
g- 1

Note that the above proof does not use any of the special properties of the
Unicast protocol and would, in fact, remain true even if Unicast was replaced
by “send(V') to all processors” and where every message received was accepted.
Doing so would save 2 rounds per phase. We have chosen to express the algorithm
in the manner we have so that “early-stopping” may be easily added, as discussed
in a subsequent section.

Theorem 4 (Correctness) The protocol of Figure 3 solves the Frangible Con-
sensus problem forn > t+2-b.

Proof The Agreement property follows from Lemma 4 and Frangible Va-
lidity follows from Lemma 3. 1

6 Protocols for the Strong Agreement Problems

We now demonstrate how a protocol for Frangible Consensus can be used to
derive protocols for the Agreement problems with the Strong Validity condition.
This shows that the “strong” variants of the Agreement problems are solvable
in our new models.

In the Byzantine Generals Problem [8], a distinguished processor (called the
General) needs to broadcast a value subject to Agreement and Strong Validity
conditions similar to those described for the Consensus Problem in Section 2.
That is, all non-faulty processors must agree on the value broadcast by the
General and, if the General is non-faulty, the agreed-upon value is the one chosen
by the General.

Given a protocol that solves the Frangible Consensus Problem in FF(n, t, b),
a protocol that solves the Byzantine Generals Problem in FF(n,t,b) is obtained
as follows:

1. In round 1, the General sends the value it wishes to broadcast to all proces-
sors including itself.

2. The processors subsequently execute the Frangible Consensus Protocol using
the value received from the General in round 1 (or 0 if no value was received)
as the initial valye.

158

processor p to accept value v from processor ¢, we can require not only that there
be a sufficient number T (usually equal to n — ¢) of witnesses to ¢ having sent v
but also no more than b witnesses to any other value. Thus, a quorum of at least
b + 1 processors can “veto” v. This is in contrast to several existing protocols,
e.g., [9, 13, 12], that only require a minimum number of positive witnesses.

In order to prevent Byzantine processors from vetoing the actions of non-
faulty processors, it is necessary that a veto quorum include at least one non-
Byzantine processor. But, if we tried to implement the veto in the pure Byzantine
model with the most common value of 7', i.e., n — ¢, we would discover that the
existence of T' positive witnesses necessarily precludes the existence of a veto
quorum. Thus, the veto is redundant in the pure models. Only in the Flexible
Failure models, e.g., FF(n,t,b) where t > b > 0, is it possible to simultaneously
have both n ~ t positive witnesses and a veto quorum of size at least b + 1.

Use of the veto technique is illustrated in the MakeUnique protocol of Figure
1 which implements a form of Crusader Agreement [3). Each processor simulta-
neously executes MakeUnique, supplying its current value of the binary-valued
variable V. MakeUnique utilizes the veto technique to ensure that all processors
that accept a value accept the same value, but some processors may not accept
any value (indicated by “accepting” the value 2). In the sequel, the value of a
variable local to processor ¢ will be denoted by a subscript, e.g., V; denotes the
value of processor i’s V' variable.

Lemma 1 If p,q are non-faulty processors such that, in MakeUniqﬁe, p assigns
v#2toV, and q assigns w#£ 2 to Vy, then v =w.

Proof [Sketch] Since of the at least n — ¢ non-faulty processors, there is some
value that is sent in MakeUnique by the majority of them and [(r ~ £)/2] > b.
Thus, if the majority sent v, no non-faulty processor could set V to 7 at the end
of Universal Exchange 1. ||

MakeUnique(V):
send(V) to all processors;
C[0] := number of 0's received;
C[1] := number of 1's received;
if Clo]2n—tAC[1] <bthen V :=(
elseif C[l|>n—tAC[0} <bthenV := 1
elee V :=2
£i;

Fig. 1. MakeUniqueProtocol for processor 0 < i < n.

164

2. If the King of phase K is non-faulty all non-faulty processors will end phase
K with the same value of V.

The proof is similar to that of Lemma 4. By fact 1, all non-faulty processors
will halt by phase K + 1 provided that no more than b processors fail.

3. If the King of phage K is faulty and the first non-faulty processor p halts in
phase K, then all non-faulty processors end phase K with the same value of
V. '
By inspection of the code’s stopping condition, p halts only if at the end of
phase K, V, # 2,D[V,], > n — b and D[2], < b. Since at most t processors
are faulty, this implies that for all non-faulty g, at the end of phase K,
D{Vplq = n — b—t > b. Moreover, since the values are sent by Unicast, by
Lemma 2, D[2}, < b. By inspection of the code, this implies that all non-
faulty q ignore the King’s Broadcast of phase K and have V; = V}, at the
end of phase K.

By fact 1, all non-faulty processors will halt by phase K + 1 provided that
no more than b processors fail.

Taken together, the above facts imply that if no more than f < b failures
occur, all non-faulty processors reach agreement and halt by phase f+2. N

8 Discussion

‘We have presented a new model of failure for distributed computing and demon-
strated protocols that solve the Agreement Problems in that model. The attrac-
tiveness of the model is that it allows some processors to fail in an unrestricted
manner while not incurring the high redundancy required in a model of pure
Byzantine failures. Since experience shows thst failures worse than processor
crashes do occur, the new model is closer to reality than either the pure crash
or pure Byzantine models.

The new failure models introduced in this paper necessitate types of rea-
soning different from that commeonly employed in either the pure crash or pure .
Byzantine models of failure. For example, the technique of forcing a processor
to repeat an action in the presence of witnesses contributes little in either of the
pure models but proves useful in the new model, as illustrated by the Unicast
protocol of Figure 2 and its proof.

This extended abstract focussed on introducing a new model and showing
that important problems could be solved within it. Thus, our protocols em-
phasized simplicity over efficiency. Qur protocol without early-stopping requires
3(t+1) rounds (when Unicast is replaced by a simple send({V') to all processors)
and single-bit messages; we also presented a simple extension that was able to
stop early under certain conditions. In the full paper we address the issues of
efficiency and early-stopping in greater generality.

156

— Agreement: The final values of non-faulty processors are equal.
and a Validity condition. The usual Validity Condition:

— Strong Validity: If the initial value of at least n — ¢ non-faulty processors is
equal to v, then the final value is v.

gives rise to the “strong” Consensus Problem. That is, no matter what failures
occur, if all non-faulty processors have the same initial value, then that value is
the final value. The Weak Consensus Problem [6] uses the weaker condition:

— Weak Velidity: If the initial value of at least n non-faulty processors (i.e., no
failures occur) is equal to v, then the final value is v.

Weak Validity restricts the final value only in the case of failure-free executions.
We define the Frengible Consensus Problem to use a Validity condition lying
between the other two:

— Frangible Validity: If the initial value of at least n — b non-faulty processors
is equal to v, then the final value is v.

The motivation behind Frangible Validity is that if the non-Byzantine processors,
including the ones that subsequently fail by crashing, begin with the same initial
value, then that value must be the final value as well.

3 Lower Bounds

In this section we examine lower bounds in the new failure models. We establish
a necessary relationship among n,t¢ and b if the Agreement Problems are to be
solvable. A (trivial) lower bound on the time to reach agreement is also stated.

Theorem 1 Consensus is achievable in the model FF(n,t,b) only if n > t+2-b.

Proof {Sketch| To the contrary, suppose Consensus were achievable with n <
t+ 2-b. Then consider the following failure scenario: Of the ¢ faulty processors,
some number ¢ are initially crashed (and therefore do not participate in the
protocol) and the remaining & = ¢t — ¢ faulty processors fail in a Byzantine
manner. Any Consensus protocol for the participating processors must be a
protocol that achieves consensus among n' = n—c processors while being resilient
to b Byzantine failures. By the results of Lamport, Shostak, and Pease [8] a
Consensus protocol that tolerates this number of Byzantine failures is possible if
and only if n' > 3+ b, But this condition implies that n > ¢ + 2 - b, contradicting
the assumption on &. i

The lower bound on time required to achieve Consensus in the new model
follows from the lower bound in the crash model [5] and is stated without proof.

Theorem 2 A protocol to achieve Consensus in the model F¥(n,t,b) requires
ot least (t + 1) rounds of communication in some runs.

168

Most transiations require simulating one round of communication of the orig-
inal algorithm by some fixed number of rounds in the new algorithm. This num-
ber is the translation’s round-complexity. Some translations are correct only if no
more than a certain fraction of processors may fail, Typically, the faull-tolerance
of an algorithm or of a translation is measured by comparing n (the total num-
ber of processors in the system) to ¢ (the number of failures tolerated). If the
requirements of a particular translation between two types of failures are neces-
sary, then this indicates that there is a certain “separation” between these two
types failures, For example, Neiger and Toueg showed that any translation from
crash. to omission failures requires that a majority of processors remain correct
{n > 2t); this indicated a fundamental difference between these two systems that
has since been studied elsewhere [3,12].

This paper explores translations from crash to omission failures in syn-
chronous systems and circumvents the fault-tolerance requirement of Neiger and
Toueg by refining the class of problems to which these translations apply. Specif-
ically, the proof that n > 2t is required for such translations appealed to a prob-
lem for which the states of faulty processors was important; such problems cannot
typically be solved in systems with general omission failures if n < 2¢ [3,12]. How-
ever, the solutions to many problems considered for distributed fault-tolerance
do not depend on the states (or actions) of the faulty processors, The results of
this paper apply to this broad class of problems.

This paper presents a hierarchy of translations, only the first of which requires
n > 2t. These vary with respect to their fault-tolerance and round-complexity,
showing a tight trade-off between the two measures. Each is optimal in the sense
that it uses the minimum number of rounds necessary for a given fault-tolerance.
Thus, we provide not only a series of translations but also a series of matching
impossibility results. Specifically, we give a function z of n and ¢ and show that, if
up to ¢ of the n processors in the system may fail, then there is a translation from
crash to omission failures that requires z{n,t) + 1 rounds to simulate one round
and that there is no translation that requires only 2(n,t) rounds. The function
is z(n,t) = [t/(n—t)} + [t/(n — t)]. In the cases where n > 2t, this gives a
translation with exactly the round-complexity of that of Neiger and Toueg: two
rounds. This hierarchy of translations is more complex than the one previously
discovered between crash and arbitrary failures [2]. In that case, there were three
possible translations. The hierarchy presented here is unbounded. Thus, our
results greatly improve the understanding of the relationship between crash and
omission failures and may lead to the development of improved fault-tolerant
algorithms for the two systems.

2 Definitions, Assumptions, and Notation

This paper considers distributed systems in which computation proceeds in syn-
chronous rounds. This section defines a formal model of such a system. This
model is an adaptation of that used by Neiger and Toueg [11].

154

crashes will occur), use low redundancy, and possibly suffer occasional catas-
trophic results, or to assume the worst (i.e., all failures are Byzantine) and pay
a high cost in processors in order to tolerate rare events.

In this paper, we propose a range of failure models that allows a mix of crash
and Byzantine failures. At extremes of the range, the model turns into either
the pure crash fault or pure Byzantine models. Within this range, we examine
two problems that lie at the core of distributed computing: performing reliable
broadcast and achieving consensus.

1.1 Comparison with Previous Results

The Agreement problems (i.e., Byzantine Generals and Consensus) [8, 10] intro~
duced a model in which the behavior of a faulty processor could be “Byzantine”
(i.e., not restricted in any way), even to the extent of giving the impression
that faulty processors were colluding to foil agreement. In this pure Byzantine
model, it was shown that the Agreement problems admitted solutions if and only
if n, the total number of processors, exceeded three times ¢, the upper bound
on number of faulty processors. A less restricted model in which processors fail
only by halting (i.e., crash failures) has also been used to study these problems
and several protocols requiring only n > ¢ have been found [7].

It has been recognized that processors fail in ways that are less restrictive
than crashing and more restrictive than acting arbitrarily. A “send omission”
model in which processors can fail either by halting or failing to send some mes-
sages was proposed by Hadzilacos 5] as a model of intermediate power. This
model was subsequently made even less restrictive by permitting faulty proces-
sors the additional power of arbitrarily failing to receive messages [11]. In both
these models, Agreement protocols were presented that only required n > t.
However, the failure types admitted in these weaker models of failure are still
considered “benign” in the sense that any message sent by a processor is correct
relative to the protocol and the processors state. In contrast, the messages sent
by a faulty processor in the Byzantine model is in no way constrained.

More recent work has provided mechanisms that restrict the behavior of
faulty processors in the Byzantine model {13, 9, 1], Still, these mechanisms re-
quire n > 3t and lower bounds have been established [1] that show that such

mechanisms multiply the running time of algorithms designed for the weaker
models.

1.2 Our Results

One contribution of this paper is the introduction of a new family of models
of failure in distributed computing. The new models permit some processors
to behave in an unrestricted Byzantine manner but do not require the high
processor redundancy of the pure Byzantine model. In contrast to all the previous
models, the new models that are introduced in this paper are the only non-
authenticated ones to admit solutions to the Agreement Problems for n < 3¢
processors in the presence of even one Byzantine failure.

170

Note that the following assumptions are made about protocols:

they are “loquacious”; all processors send some message in every round;
they require each processor to broadcast the same message to all (in any
given round);

their state transition functions depend solely on the messages that a proces-
sor has just received and not its current state; and

they never have processors “halt.”

These assumptions are made only to simplify the exposition and do not restrict
the applicability of the results.

2.3 Histories and Problem Specifications

Histories are defined to describe the executions of a distributed system. Each
history includes the following: :

4

the protacol being run by the processors,
— the states through which the processors pass,
— the messages that the processors send, and
— the messages that the processors receive.

Let Q(i,p) be the state in which processor p begins round i. Let 8(¢,p, ¢) be the
message that p sends to ¢ in round ¢ or L if p sends no message to ¢. Let R(%,p, q)
be the message that p receives from ¢ in round ¢ or L if p does not receive a
message from ¢.° H = (IT,q,s,R) is a history of protocol IT.

A system is identified with the set of all histories (of all protocols) in that
system. Thus, a system can be specified by a set of histories. A system can also
be defined by giving the properties that its histories must satisfy. If S is a system
and H = (IT,q,s,R) € 5, then H is a history of IT running in S.

Protocols are run to solve particular problems. Formally, such problems can
be specified by predicates on histories. Such a predicate, called a specification,
distinguishes histories that solve the problem from those that do not. For ex-
ample, the serializability problem in distributed databases can be specified by a
predicate ¥ that is satisfied exactly by those histories of the database in which
transactions are serializable. Protocol IT solves problem with specification X (or
solves X)) in system § if all executions of IT in § satisfy X

The solutions to many problems are not concerned with the behavior of the
faulty processors. For example, the Byzantine Generals problem requires only
that all correct processors reach agreement [10]. The specification of such a prob-
lem is feilure-insensitive. Formally, a specification X' is failure-insensitive if the
following is true: if some history H; satisfies £ and H; differs from H; only with
respect to the behavior (state and message histories) of the faulty processors

1 Given any history H we want to be able to identify incorrect behavior in H; this
requires that H include the protocol II that processors should be following.

® Because of failures, the states and messages specified by II may be different from
those indicated by Q and s, and R(%, p,) need not equal (3, ¢, p); see Section 3.

152

References

10,

11.

12,

13.

14,

. Bar-Noy, A., Dolev, D.: Families of Consensus Algorithms. Proc. Aegean Workshop

on Computing 3 (1988) 380--3%0

. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting Gears to Expedite Byzan-

tine Agreement. Proc. Annual ACM Symposium on Principles of Distributed Com-
puting 6 (1987) 42-51

. Berman, P., Garay, J.: Optimal Early Stopping in Distributed Consensus. IBM

Research Report RC 16746 (1990)

. Berman, .P, Garay, I.; Distributed Consensus with = = 3 . (1 4+ ¢) Processors.

Proc. International Workshop on Distributed Algorithms, LNCS, Springer-Verlag
5 (1991)

. Berman, P., Garay, J., Perry, K.J.: Towards Optimal Distributed Consensus. Proc.

Symposium on Foundation of Computer Science 30 (1989) 410-415

. Coan, B.: Efficient Agreement using Fault Diagnosis, Proc. Allerton Conference on

Communication, Control and Computing 26 (1988) 663-672

. Dolev, D., Reischuk, R.: Bounds of Information Exchange for Byzantine Agree-

ment, JACM 82 1985 191-204

. Dolev, D., Reischuk, R., Strong, H.R.: Early Stopping in Byzantine Agreement.

JACM 387 (1990) 720-741

. Fisher, M., Lynch, N.: A Lower Bound for the Time to Assure Interactive Consis-

tency. Information Processing Letters 14:4 (1982) 183-186

Hadzilacos, V., Halpern, J.: Message-Optimal Protocols for Byzantine Agreement.
Proc. Annual ACM Symposium on Principles of Distributed Computing 10 (1991)
309-324

Moses, Y., Waarts, O.: Coordinated Traversal: {+1-Round Byzantine Agreement in
Polinomial Time. Proc. Symposium on Foundation of Computer Science 29 (1988)
2462565

Pease, M., Shostak, R., Lamport, L.; Reachmg Agreement in the Presence of Faults.
JACM 27:2 (1980) 228-234

Waarts, O.: Coordinated Traversal: Byzantine Agreement in Polynomial Time.
M.Sc. Thesis, Weizmann Institute of Science, Rehovot, Israel (1988}

Zamsky, A.: New Algorithms for Agreement Problem in Synchronous Distributed
Networks, M.Sc. Thesis, (in Hebrew), Technion, Haifa, Israel (1992)

172

it receives no messages in round i,:
Vg € P[R(ic,p,q) = L];

~ or p crashes after sending:
e it sends correctly in round i :

Vg € p[s(imp, Q) = I‘wr(icspv Q(icnp))]; and

¢ it receives from each processor ¢ either what g sent or nothing at all:

Vg € PlR(ie,p,q) = s(icsqu) A R(icnp; Q') = —-L]-
In either case, p takes no action after the crash:

— it sends and receives no messages: Vi > i, V¢ € P[s(i,p,¢) = R(%,p,¢) = 1],
and .
~ it makes no state transitions: Vi > 4.[Q(i,p) = (i, p)}.

The system C(n,t) corresponds to the set of histories in which ¢ processors
are subject only to crash failures and all other processors are correct. That is,
H € C(n,t) if and only if P can be partitioned into sets C' and F such that
C = Correct(H), |F| < t, and

Vp € F i, € Z[p commits a crash failure in round ¢, of HJ.

3.3 Omission Failures

A more complex type of failure, called an omission failure, occurs if a processor
intermittently fails to send and receive messages [13]. Such failures have also
been called general omission failures. Processor p may commit such failures in
history H = (IT,q,s, R} if it always makes correct state transitions, always sends
to each processor what its protocol specifies or nothing at all, and always receives
what was sent to it or nothing at all:

— Vi€ ZVq € Pls(i,p,q) = pr(i,,Q(6,p)) V 8(3,p,q) = L]; and
— Vi € ZVq € Plr(s,p,q) = s(t,q,p) vV R{{,p,q) = 1]

Let O(n,t) be the set of histories in which all processors are correct except for
t, which are subject to omission failures. (Note that omission failures a strictly
more severe than crash failures; a processor effectively crashes if it omits to send
and receive all messages from some point onward.)

4 Translations between Systems with Failures

This section formally defines the concept of a translation from C(n,t) to O(n,t).
The definition of translation used here is an adaptation of a more general defi-
nition used in other papers [2,11].

150

is correct then Lemma 19 (a&d) implies that in ¢ + 1th period both p and ¢
closes node o and close(ap) = close(a,). If last(a) is faulty Lemma 19 (a)
implies that ¢ first processors in « are faulty. Hence all the sons of ap and o,
are correct, therefore their tree values in 16, and 1G4 are equal and obviously
the final values of o are also equal. By down-counting induction on |a| we
can prove that the final value of s, is equal to the final (resolved or closed)
value of s,. Hence we get the agreement. 0

Let o be a run of LS8’ and let &« be the smallest node s.t. at round 7 of ¢
current(p) = o for some correct p. Then we denote m™ = a. By M, we denote
the set of all such nodes, and by C, the set of all nodes that during the run ¢
were current for the correct processors.
Lemma 21. For every run ¢ of LS8” m™ » m" 1,

Proof. 1f all the processors with current on m™=1! halt before round » the lemma
holds. Otherwise let p be a correct processor s.t. in round » — 1 current(p) =
m™=1. In the end of round r — 1 p recognizes at least n — ¢ processors are at
least as fast as him, and therefore p performs traverse. Hence if p does not halt
before round r then it begins round r with current(p) > m" 1. a

Lemma22, Lel ¢ be ¢ run of Ls&’, p correct in 0 and o € C;. Then p detects
that last{a) is faulty not later then the round in which p finishes update-tree

at fa),.

Proof, If o« € C, then for some correct j path(o;) is not closed at T(j, |a|). In this
case Lemma 19 (b) implies that path(eay) is open in T(p, |a] ~ 1), hence at some
point correct(p) = f(«)y. Processor p does not leave f(o) without performing
update-tree at f{a),. Since n > 8 -¢ and since j does not succeed to close «;
immediately after «; becomes full, it is not hard to see that when o, becomes
almost full in 1G, processor p detects that {ast(«) is faulty. O

Lemma23. Let o be a run of L58’. Then the following holds:

a. If B> o 8.t o € C, and last(B) = last(a) then for every correct p path(8,)
is closed not later then the round in which p is first visiting a node that
is greater than f(B). In the case that f(f) becomes p’s current node, 3, is
closed with 0.

b. For every o, € C, last(a) # last(3).

Proof. Lemma 22 implies that each correct processor that reports tree(f) re-
ports for it a value of 0. On the other hand tree values of 3,’s sons that are
accepted by reconstruction are also 0. Since n > 8 - ¢, the above implies that
if path(f,) is open when p reaches g then when node 3, becomes almost full
close(fp) is set to 0. Lemma 23 (b) is an easy corollary from part (a). Q

Lemma 24. In each run of LS8’ every correct processor halt within af most f+42
rounds. '

174

5 A Hierarchy of Translations

This section shows a hierarchy of translations from crash to omission failures.
It exhibits a canonical translation, which translates from C(n,t) to O(n,t) in z
rounds, where z = [t/(rn —)] + [t/(n - t)] + 1. Note that the larger the ratio
t/(n-1) (i.e., the more failures), the higher the round-complexity. Section 6 will
show that each of these translations is optimal with respect to the combined
measures of fault-tolerance and round-complexity.

The translation is given in Fig. 2, In each phase, each processor maintains
in msgs the array of messages for that phase of which it is aware; initially, it
is aware only of its own message. During the z rounds of a phase, processors
exchange these arrays and other information; they use these arrays to decide
which messages to simulate the receipt of at the end of a phase (see below for
more details). The redundant communication given is needed to mask the more
severe omission failures and make them appear to be only crash failures.

Consider a message to be sent by processor p to processor g in round ¢. In
a system. with omission failures, if ¢ does not receive this message in round i,
then either p omitted to send or ¢ omitted to receive. To make omission failures
appear as crash failures, the faulty processor must appear to crash by the end
of round ¢, The translation enforces the following informal properties:

1, [FAULTY-RECIPIENT] If ¢ does not receive p’s message in round i and p is
a correct processor, then no correct processor will receive a message from g
after round i.

2. [FAULTY-SENDER] If ¢ does not receive p’s message in round and q is cor-
rect, then no correct processor will receive a message from p after round ;.

In either case, the faulty processor appears to crash in round ¢ because no correct
processor will receive from it after that round.

Each processor keeps track of the set of processors it considers to be faulty
in the variable faulty. As Lemma 1 will show, all processors in the faulty set of a
correct processor are indeed faulty. A processor includes its set foulty with every
message that it sends; it disregards messages received directly from processors
in feulty and does not send messages to those processors. However, a processor
may simulate (at the end of a phase) the receipt of messages from processors in
faulty if these messages are relayed to it by other processors.

Each processor p maintains its set faulty as follows. It adds to it any other
processor from which it fails to receive a message, In addition, it maintains for
each processor ¢ a set accuse[g]. This contains the set of other processors that
“accuse” g of being faulty. If this set gets sufficiently large, then p adds ¢ to
Faulty. Also, p will add ¢ to faulty if it believes that ¢ is “accusing” too many
other processors. Specifically if the union of the set p believes to be faulty, the
set ¢ claims is faulty, and the set accusing ¢ of being faulty has size greater than
t, then p and ¢ cannot both be correct and p places g in its set faulty. Note that,
if ¢ is in p’s faulty set at the end of some round #, then p will be in g¢’s faulty
set by the middle of round ¢ + 1; this is because a processor refuses to send to
mermbers of its faulty set.

148

tree(ajgy) 1= tree(ajp);
end;
2. For every ajp son of o apply CDR and FDR;
3. For every g detected as faulty at step 2 do
for every 8 > a s.t. ¢ € 3 and path(f,) is open do tree(fig,) 1= 0;
4. If o is not new and at least n — ¢ processors are at least as fast as p
then begin
Apply prediction rule 1 to each node ajy;
If node «j, remains open then
for every ¢ s.t. ¢ not in aj and wjg, €16, do
tree(ajqy) 1= 0;
Apply prediction rules 1 and 2 to subtree(a,);
end; :
5. Remove all the descendants of closed nodes from subtree(a,).

Now we can show why a processor performs update-tree twice. Denote the
father node of o by f(«). Suppose that p traverses node «, before some correct
7 broadcast free{a;). Consider the situation when p leaves f(a),. In this case
node o is full but not closed and tree(e;) = 0. Since at that time there are at
least n —t processors that are at least as fast as p then there are at least n —2.¢
correct processors that traversed f(o) or halted. When processor j reaches f(a)
it performs update-tree during which it recognizes that last(«) is faulty. Hence
if j broadcast tree(a;) the broadcast value is 0.

5.2 Correctness Proof and Complexity

Let ¢ be a run of LsB and let p be a correct processor in o. Per(r), is the set of
communication rounds during which the rth level of 16, is built (i.e. level, = r).
By T(p,r) we denote the 1G, tree at the end of Per(r),. For every correct
processor p we define level, = || + 2 were o is current(p). To make our proof
simpler we start with a modified protocol, denoted by 1.s8’. In 1,58’ each correct
processor p that does not halt in traverse builds tree of height ¢ + 1 (and then
applies resolve). Later we shell see that in LS8’ processors halt within at mosi
t + 2 rounds. Afterwards we prove that LS8 indeed reaches BA for ¢ < n/8 using
optimal time and messages of linear size. We assume that all the structures of
LS8 are defined for LS8’

Yemmal9. let o be a run of 158’ and let p be an arbilrary correct processor.
Then the following clatms hold:

a. If |o| < r and last(c) is correct then path(oy) is closed in T(p,r);

b. If j is correct and path(o;) is closed in T{j, r — 1) then path(a,) is closed in
T(p,r); .

c. Let j be a correct processor and suppose that in T(j,r — 1) close(a;) = v
when path(ay) in T(p,r — 1) is open. Then somewhere in Per(r), node o,
s closed with v,

176

Lemmal. No correct processor ever belongs to the faulty set of another correct
Processor.

Proof. The proof is by induction on the number of rounds executed. The base
case is trivial because all processors have empty faulty sets initially. Now assume
. that the lemma holds through round i. Suppose that some correct processor p
adds another processor g to its faulty set in round i + 1. This can happen for
one of two reasons:

— p does not receive a message from g¢. In this case, ¢ must have omitted to
send a message and is thus faulty.

— p found |accuse[q] U faulty, U foulty] > t. Since there are only ¢ faulty pro-
cessors and, by induction, all elements of p’s set faulty are faulty, there must
be at least one correct processor r € accuse[g] U faulty,. If r € accuse[q],
then ¢ was in r's faulty at the end of round i, so ¢ is faulty by induction. If

7 € faulty,, then r was in ¢’s foulty at the end of round i and, again, g is
faulty.

In all cases, g is faulty, so the lemma holds.]

The following lemma shows that the translation does not inhibit normal
communication between correct processors.

Lemma2. If a correct processor p sends m atl the beginning of a phase, every
correct processor q stmulates the receipt of m at the end of that phase.

Proof, In the first round of the phase, p sends an array masgs to g with msgs[p] =
m. Since both p and ¢ are correct, ¢ receives this array. By Lemma 1, p cannot
be in ¢'s set faulty. Thus, g sets msgs[p] = m at the end of this round and thus
simulates the receipt of m from p at the end of the phase,]

The following lemma is the core of the correctness of proof of the translation.
It shows that, if there are failures sufficient to prevent two processors from
communicating in a given phase, then the faully sets of all processors will cause
a “partition” to occur in the next phase. One of the two processors is faulty and
will be separated from the correct processors; to them, it will appear to crash.
This is sufficient to simulate crash failures.

Lemma3 (Partition Lemina). For any two processors p and q, if ¢ does not
simulate the receipt of p’s message at the end phase i, then theve is a partition
of P into two sets C and F such that

|

all correct processors are in C,

— p and q are not both in C,

every v € C has F C faulty by the end of the first round of phasei 41, end
every 8 € F has C C faulty by the end of the first round of phase i 4+ 1.

146

Proof. Lemma 4 (a) implies that all processors in o except last(a) are faulty,
hence at least n — (¢ — || + 1) of a,’s sons are correct. Since last(a) is correct,
the tree values of all correct sons of o are equal to tree(a,). Hence tree(ay) is
the tree value of at least n —2-¢+ || — 1 of op’s sons chosen from the set . Since

|e| > 1 and since n > 6 - ¢ we get that there exist more than ”—'Jﬂl + {t — |o|)
nodes 2 s.t. 3 € § and {ree(3) = tree(«r). Thus the claim follows by prediction
rule 1. a

The first two rounds of Ls8& are exactly like those of EsFM4. Starting from
round 3 every processor that does not stop during the first two rounds performs
a procedure called reconstructed traversal {described below) for at most ¢ —2
extra rounds. If some correct processor p does not halt within £ 4+ 1 rounds then
it applies resolve to 1G,.

L8 (at processor p):
1. first two rounds: like in EsFM4;
2. for 3 < r <t +4 1 perform reconstructed traversal;
3. apply resolve t01G,.

At any round of the reconstructed traversal, every correct processor p
corresponds to some node « that is called the current node of p and denoted by
current(p); at the beginning of the traversal current(p) := s. Let p be a correct
processor and assume that at some round current(p) = «. In this case a, is new
if the tree values of o, sons were not broadcast by p. We say that node 3, is
almost full if at least n — |3} — ¢ sons of 9, have some tree values, and node §,
is full if all of its sons have tree values. As we shell see, when current(p) = «,
each G, s.t. |3| < |ef is full or closed.

In LS8 every processor p maintains IG,, faulty-list, and contradiction-list,
which are used in ESFM4 and three additional data structures: reported-listy,
curreni-list, and halted-list,. In reported-list, p stores all the incoming messages,
halted-list, is a list of processors that p claims as being halted (i.e. they stopped
assuming they are correct). For every processor ¢ s.t. ¢ & (halted-list, U faully-
list,), processor p chooses some node 8, in current-list,, to be the current node of
q with respect to p (i.e. current(q), = 3). All the above structures are initiated to
empty. We say that processor g is at least as fast as p if current(q), > current(p)
or if ¢ € (halted-list, U faulty-list,). ‘

Each round of the reconstructed traversal al p consists of three parts: (i)
if erp is new then p broadcasts the tree values of every son of a,; (ii) p collects all
the incoming messages and updates the appropriate data structures; (iil) at the
end of the round p counts the number of processors that are at least as fast as
p; in case that there are at least n — { such processors p performs the traverse
procedure.

reconstructed traversal:
1. If @ = curreni(p) is new then broadcast the tree values of every son of e,
otherwise broadcast special beep signal;

178

faulty] > |N; UM;_3| = /P - Lj| > n — (n - t) = t for every processor
7 € Mj.1. Thus, all processors in N;._; will have M;_; C faulty by the end
of round j + 1. Now consider a processor * € M;_;. As noted earlier, it has
N; C foulty by the middle of round j + 1. Consider now some processor
8 € Mj — M;_, C Nj_;. Because it is in Nj..1, ¢ will have M;_» C faully by
the end of round j — 1. Thus, in round j + 1, » finds |accuse[s] U faulty, U
faulty| > |faulty, U faulty| > |M;_2 U N;| > t (as above) and thus adds s to
faulty by that time. This means that, by the end of round j+1, all processors
in M;_; have N; U (M; — M;_,) = N;_1 C faulty. By Lemma 1, all correct
processors are either in M;_, or N;_;. Let C be the one of them containing
the correct processors and let F be the other (its complement). Then (C, F}
is desired partition.

The desired partition exists in either case, completing the proof. O

The two desired properties are corollaries to the Partition Lemma:

Corollary 4 (Faulty-Recipient). If ¢ does not receive p’s message in round
and p is a correct processor, then mo correct processor will receive a message
from q after round <.

Proof. Suppose that g does not receive p’s message in round i and that p is a
correct processor, By the Partition Lemma, there is a partition of P inte (C, F')
such that p € C, q € F, all the correct processors are in U, and each processor in
C has F C faulty by the end of the first round of phase ¢ 4+ 1. This means that,
in phase ¢ + 1 and thereafter, all correct processors will refuse messages from ¢
and from any processor that might relay a message from g.]

Corollary 5 (Faulty-Sender). If g does not receive p’s message in round ¢ end
q is correct, them no correct processor will receive ¢ message from p after round i.

Proof. Similar to the proof of Corollary 4. m}

Lemma 2 shows that the translation always allows correct processors to com-
municate with each other. Corollaries 4 and 5 show that any sufficiently severe
failure manifests itself as a crash failure. Together, these allow us to conclude
that the translation is correct:

Theorem 6. Translation T translates from C(n,t) to O(n,t) in z rounds, where

z=1t/(n~t)] +[t/(n-t)] + 1.

The formal proof of Theorem 6 requires the construction of the history sim-
ulation function M and a proof of its correctness; given the Partition Lemma,
this is straightforward and omitted. One note, however, is warranted. This re-
gards how these translations circumvent the impossibility results of Neiger and
Toueg [11]. Their definition required that the history simulation function # cor-
rectly simulate the states of all processors, We require only that the state of
correct processors be correctly simulated. In our construction of 7, the states of

144

Lemma 12, (FDR) Let ¢ be o run of £54 end let p be a correct processor in o.
If p detects that some processor g contradicts at least t + 1 other processors then
p can claim that ¢ is faulty.

The next lemma was proved by [2]):

Lemmal3. (FMR) Let ¢ be a run of some synchronous agreement protocol and
suppose that at the end of round r precessor p can claim that another processor,
q, is faulty. Then processor p may prelend that starting at round v + 1 all values
reported to il by q are 0, withoul jeopardizing the correciness of the protocol.

We modify Es4 as follows: in every communication round after collecting
the incoming information and building the next level of the 1G tree {and before
applying prediction) the processors apply CDR, FDR and F'MR. For this purpose
each processor maintains contradiction-fist which is a list of processor pairs and
fauliy-list which is the list of processors. Both are initiated to empty lists and
updated at the end of each communication round. The new protocol is called
Farly Stopping protocol with Feult Masking for ¢ < n/4 and denoted by EsFrm4.
It is obvious that Lemma 4 and Lemma 8 also hold for EsFM4.

Theorem 14. The BsFM4 protocel echieves Byzantine Agreement for t < n/4.

For correct p in run o of EsFM4 node w, is corrupled if path(a,) is open at the
end of round |e| + 1. Obviously if &, is corrupted then all processors in o are
faulty.

Lemma 15. Let ¢ be a run éf ESFM4 in which node oy is corrupted. Then p
detects (using FDR) that last(e) is fanlly not later than the end of round |a|+ 1.

Proof. The proof is done by induction on |a|.

Base-case: o] = 1 {i.e. @ = s5). If s, is open at the end of the second round
then rule 1 implies that the number of s,’s sons whose tree value is tree(s;)
is not greater than 231 + (£ — 1). Since n > 4 - ¢ we get that processor p
recognizes more then ¢ contradictions with processor s and therefore detects
that s is faulty.

Induction step: Suppose that the lemma holds for all # s.t. |3 < % and let
|a| = k. Since Lemma 4 (a) holds for EsFM4 we get that all the processors
of a are faulty and by induction hypothesis at the end of round |a| all of
them (except, possibly, last(a)) are detected by p as faulty. Since o, is
open at the end of round |@| + 1 then from prediction rule 1 follows that
for at least "’—“2&[—~ (t — |e]) of ap’s sons the tree values are differ from
tree(op). Therefore at the end of round |a| + 1 processor p recognizes at

least -’3«7-,}31 —t+2-|a|—1) contradictions to last(a). Hence FDR rule implies
that until the end of round |a| + 1 p detects that lasi{e) is faulty. 0

Let ¢ be a run of ESFM4 s.t. for every correct g, node @, is corrupted; then we
say that processor last(«) is a delay-causer of round |e|. '

180

translation used has round-complexity z = (¢t/(n ~ t)| + [/(n — t)]. (Obviously,
translations with lower round-complexity will also fail.)

Assume for a contradiction that there is a 2-round translation 7 from C(n, t)
to O(n,t). We will describe an execution of II, = T (II.) and show that it cannot
simulate a history of II, that meets all three of the above constraints. This will
contradict the existence of the translation.

Let k = |t/(n - t)]. Note that z = 2k + b, where b is 0.if ¢ is a multiple of
n — t and is 1 otherwise. Define the sets Lu,Ll, vy Lz+1 as follows:

Ly = {pl}a
L= {Pz, ten ,Pn—t},

Lo = {Pin-ty+1}
Ly = {p:’(n—t)+2) e :P(i+1)(nwt)}a

Lok = {pr(n-t)+1}, and
Lapyy = {Pk(n—t)+z, e vp(k+1)(n—t)};

if b =1, we define Lag1a = {P(h+1)(n-t)415+ -+ +Pn }. It is casy to see that none of
the defined sets is empty. (Remember that k = |t/(n — t)|,s0 k+1 = {n/(n - t)]
and n < (k4 1)(n —t}; this is a strict inequality if b = 1.) Furthermore, the last
set is always L., regardless of the value of b, Note that Ly N L; = @ if i # j
and {L; ULy | >n—tforalli,0<i<z

Consider the following run of IT,, the translated protocol No communication
takes place between processors in L; and those in L;, j > i+ 1 in any round i+ 1
or afterward. (Note that this implies that processors outside Ly UL, never receive
any message from p;.) All processors behave correctly otherwise. Although we
have not identified the faulty processors, it should be clear that this can be a run
in system O(n,t). For example, Ly U L; might be the set of correct processors
because it contains n—t processors and there is no communication failure among
its members. All missing messages can be accounted for by assuming that the
remaining processors are faulty and fail either to send or to receive (or both).
In fact, any set L; U L;yy, 0 < i £ 2z, could be correct for the same reason.
Thus, what we have described is actually a set of histories, all of which are
indistinguishable to the processors in the system. It is the processors’ inability
to determine the identity of the correct processors that leads to the impossibility
result,

It is clear that processors in L; first learn of p,’s initial state at the end of
round {. In particular, processors in L .1, do not know p;’s initial state until the
end of round z + 1 (the first round of the second phase) and thus do not know
P1’s initial state at the end of the first phase. This fact will be critical to the
proof because it will contradict the following lemma:

142

Base-case: d(a), = 1. In this case a, is closed by rule 1. If close(ap) = v it can
be shown that the majority of a,’s sons are correct nodes with tree value
v. Let g be another correct processor. Since for every correct § tree(f,) =
tree(3,) the majority of o, sons are correct nodes with tree value v. Since
Lemma ! implies that for every correct 8 resolve(8;) = tree(8,) we get
resolve(a,) = v. Hence node « is common.

Induction step: every prediction of depth greater then one is based on predic-
tions of smaller depth. The complete proof is done in a way similar to the
induction step of Lemma 6. O

Lemma8. Let o be a node closed by some correct processor p in round r. Under
this conditions, for every correct processor q, path(wy) is closed no later than
the end of round v + 1.

Proof. For correct last(a) the proof follows immediately from Lemma 4(a). If
last(c) is faulty the proof is by induction on d(«), as follows:

Base-case: d{a), =1 (i.e. r = || + 1). Corollary 5 implies that all processors
in o are faulty. In this case, if close(a,) = v then for every correct ¢ node
has more then flzlﬁl correct sons with tree value v, If path(a,) is open at the
end of round » then Lemma 4 implies that until the end of round » + 1 all
correct sons of oy are closed hence the lemma follows from prediction rule
2.

Induction step: Suppose that the lemma holds for all predictions of depth< &
and let @, be a node closed with value v in round r s.t. r— |a| = k. Let ¢ be
a correct processor and suppose (by contradiction) that at the end of round
r+ 1 path(a), is open. Let aj, be a closed son ap. Then «j, is closed in
depth no greater than £ — 1 and by induction hypothesis at the end of round
r + 1 node aj, is also closed. Lemma 7 implies that node «j is common
and Lemma 6 implies that for every node g8 in 1G iree of correct processor
close(f8) = resolve(f). Therefore close(ej,) = close(aj,). In particular,
if at the end of round » close(ef,) = v then at the end of round r + 1
close(af,) = v. Hence by prediction rule 2 at the end of round r + 1 node
o, also closed with v. Contradiction. o

We now amend the FIP protocol as follows: at the end of every communication
round each processor applies reconstruction to get the values of missing nodes.
Following reconstruction the processor applies prediction to close as many nodes
as possible. Communication rounds are performed as before and at the end of
round ¢ + 1, closed nodes are treated like leaves. The amended protocol is called
FIP(RP), for FIP with reconstruction and predictions. It is obvious that all the
properties proved for FIP hold for FIP(RP) as well.

A BA protocol is early stopping if its time-complexity can be improved when
the actwal number of faulty processors is smaller then ¢. In the sequel we outline
some further modification to protocol FIP(RP) that yield an early stopping pro-
tocol called Es4. If node w, is closed in round r then starting from round r + 2,
no processor uses the transmitted values of leaves in subtree(w) to determine

182

contribution is that, when considering problems whose specifications are inde-
pendent of these actions, the impossibility result does not hold. For cases in
which n £ 2t, we exhibit a hierarchy of translations; the number of rounds used
in each translation depends on the particular values of n and . In general, the
larger that ¢ is relative to n, the more rounds that are needed to perform the
translation. :

The round-complexities of these translations are all optimal. Thus, our results
give a precise characterization of the relationship between crash and omission
failures. The hierarchy given here is quite different from the one given earlier
for translations from crash to arbitrary failures [2]. In that case, the translations
were all quite different from each other. The translations given here are uniform
in that they have the same structure, varying only in their round complexity.
When translating to arbitrary failures, three translations covered the entire hi-
erarchy. The hierarchy presented here is unbounded (it contains ¢ levels for any
fixed ¢). Table 1 summarizes this hierarchy of translations. The first column gives
progressively weaker conditions on n and ¢; the second gives a number of rounds
that is adequate to perform the desired translation (fewer rounds may be neces-
sary if a stronger condition holds). In the weakest case, n =t + 2, £ + 1 rounds
are required. Note that ¢ + 1 rounds are always sufficient, because fail-stop fail-
ures {15] can always be simulated in ¢+ 1 rounds, and they are a more restrictive
type of failure than crash failures.

Condition|Rounds
n> 2t 2
n> 2t 3

n>3/21 4

n>3t/2] 5

n>4t/3| 6

n> 43| 7

n>t+2] t+1

Table 1. Summary of translations

All the translations are efficient in that they generate protocols that do not
require substantially more local computation than the original protocols. In all
cases, if the largest message sent in original protocol is of size b, then the largest
message sent in the translated protocol has size O((b + 1)n).

Translations such as those presented in this paper have been developed for
completely asynchronous systems {4] as well as the completely synchronous sys-
tems considered here. Other researchers have studied problems in which there

140

of a’s sons is equal to the tree value of o. According to the definition of the
resolve function, we can prove, using simple down-counting induction on |a|,
starting from |e| = ¢ + 1, that resolve(e) = free(a). By the protocol, the tree
values of o in the 1G trees of all correct processors are equal, a

Lemma2. In every run of the FiP protocol there cxisls a common froniier.

Proof. Consider the 1G tree of an arbitrary correct processor after the {+1 round
is completed. This is a balanced tree of height ¢ + 1. Since there are at most ¢
faulty processors, each path has at least one correct node. By Lemma | this node
is common, hence each path has at least one common node. (n;

Theorem 3. The FIP protocol reaches Byzantine Agreement for t < n/3.

Proof. ‘If s is correct then Lemma 1 implies that for every correct processor p,
resolve(s,) = tree(sy), hence the protocol satisfies validity. To prove agree-
ment, it can be shown that if there exists a common frontier then the root node
is also common, hence the lemma follows from Lemma 2. &

4 Prediction Reconstruction and Fault-Masking

In this section we assume that ¢ < n/4 and present the prediction, reconstruec-
tion and fault-masking techniques which are integrated into the FIP protocol
to obtain an early stopping protocol called EsFM4. This is an intermediate pro-
tocol which will be modified once again in the next section to get the linear
protocol.

Reconstruction: If at round |a| + 1 processor p does not receive the value of
node wq (from processor g), then tree(og,) = tree(a,). It is easy to see that
in this case ¢ is faulty, since a faulty processor can send arbitrary values, the
protocol tolerates these values as well and its correctness is preserved.
Prediction: The following two prediction rules detect a situation in which the
resolve value v of some node & can be evaluated before the end of round ¢ + 1.
In this case we say that node « is closed with v, and denote it by close(a) = v.

rule 1: If the tree value of more than "—}m + (t — ||} of a’s sons is v then
close(a) = v.

rule 2: If more than (at least) -'-’—"-21-9'-1 of o’s sons are closed with 1 (with 0,
respectively) then close(a) := 1 (close(a) := 0 respectively)

If path(a) has a closed node then it is closed, otherwise path(a) is open. For
the time being we assumne that the close values are not used and the protocol is
executed without any changes. At the end of every communication round each
processor applies rules 1 and 2 to close as many as possible nodes which are not
on a subtree of a closed node. We now prove thal the prediction rules indeed
predict the resolve values of closed nodes:

10.

11,

12,

13.

14,

15.

16.

184

Leslie Lamport, Robert Shostak, and Marshall Pease, The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382-
401, July 1982.

Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of dis-
tributed algorithms. Journal of Algorithms, 11(3):374-418, September 1990.

Gil Neiger and Mark R. Tuttle. Common knowledge and consistent simultaneous
coordination. In J. van Leeuwen and N. Santoro, editors, Proceedings of the Fourth
International Workshop on Distributed Algorithmas, volume 486 of Lecture Notea
on Computer Science, pages 334-352. Springer-Verlag, Septembex 1990. To appear
in Distrsbuted Computing. ‘

Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of pro-
cessor and communication favlts. IEEE Transactions on Software Engineering,
12(3):477-482, March 1986.

Stephen Ponzio. Consensus in the presence of timing uncertainty: Omission and
Byzantine faults. In Proceedings of the Tenth ACM Symposium on Principles of
Distributed Computing, pages 125-138, August 1991,

Richard D, Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems, 1(3):222-238, August 1983.

T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Disiributed Computing, 2(2):80-94, 1887. '

138

by Berman, Garay and Perry in [5], using the new technique of Cleture Vole.
Following that, Berman and Garay, in [3], Combined Cloture Voie with another
technique called Dynamic Faull Masking to obtain the CVDM protocol. Finally,
in [14], the new reconstruction principle was introduced and combined with Clo-
ture Vote of [B], to achieve yet another improvement. Independently, the idea of
reconstruction (in a more complex form) was presented in [3].

Sometimes it is important to measure the total number of bits sent by all
correct processors during execution of the protocol. For this measure the lower
bound is £2(n?) bits [7]. Because Byzantine Failurcs are relatively rare we are
interested in algorithms which are as efficient as possible if our network is failure-
free. In [10] it is proved that the total message traffic in the failure-free case in
any BA protocol is at least 2(n - 1).

In this papér we combine some of the techniques used in [14] with a modified
version of the Coordinated- Traversal technique to obtain a novel technique called
Reconstructing Traversal The new protocol, which is called 158, is round-optimal
and tolerates up to ¢ < n/8 faults by using messages of linear size (m < n +
O(logn)). Our protocol is much simpler then the original Coordinated Traversal
of [11].

The remainder of this paper is organized as follows. Some important def-
inition are presented in Section 2. In Section 3 we describe the “classic” full
information protocol FIP of [12]. In Section 4 we present the Prediction, Recon-
struction and Fault-Masking techniques and combine them into FIP to obtain
the Optimal-Early-Stopping Fault Masking protocol for t < n/4 (called ESFMA4).
Both rip and ESFM4 require exponential communication. Protocol ESFM4 is used
as an intuitive basis for L38: Linear-Size messages protocol fort < n/8 presented
in Section 5. Concluding remarks and open problems are brought in Section 6.

2 Definitions

Names of processors are denoted by small letters (2.g. p, ¢). Sequences of pro-
cessor names beginning with s (seurce) and without repetitions are denoted by
small greek letters. For a sequence of processors o processor last(a) denotes the
processor whose name appears in the last place of a. aq denotes the sequence
obtained by concatenation of ¢ to the sequence .

Crenerally, all the protocols described below consists of two parts: Frformation
Erchange and Decision. During Fnformation Exchange each processor constructs .
an Information Gathering tree denoted by 16, Every node of 1G is labeled by some
sequence «, where the root node is always labeled by s and if § is not in « then «
is the father of the node labeled «j. Therefore, node « has exactly n — || sons.
To every node o a processor may associate a value v drawn from the domain
W. Subscript p denotes local variables and values in processor p. Processor p is
correct if it follows the protocol; otherwise it is faulty. We say that node « is
correct if last{a) is correct,.

At the beginning of the protocol all 1G trees of correct processors are empty.
At the Init round the source processor (assuming it is correct) broadcasts its

186

only to nodes that are not “permanently disconnected” from both endpoints of
that link.)

One way to solve the topology update problem is to use existing solutions for
the end to end problem. Afek and Gafni [AG88] gave the first bounded solution to
the end-to-end problem in dynamic networks. The first polynomial solution was
given in [AMS89], which was later improve in [AGR] and [AG91]. Still the best
complexity of solving the end-to-end problem requires O(mn) messages per data
item that is sent, where m is the number of edges and n is the number of nodes.
For the topology update problem we need to have each node communicate to
each other node the status of all its link. This implies that using the best known
end-to-end protocol to solve the topology update problem requires O(mn?) per
topological change. In this work we present a much more efficient solution that
requires only O(m) messages per topological change, and is also considerably
simpler.

A weaker model is one with dynamic networks that eventually stabilize. The
main difference is that the algorithm guarantees to cutput a correct value only if
the network is stable. Infact, the topology update algorithms in this model {e.g.
[SG89]) do not solve topology update problem in a dynamic network that does
not stabilize. A general technique of transforming an arbitrary static protocol
into a dynamic protocol, in a network that eventually stabilizes, was given in
[AAG8T]. The technique of [AAG87] restarts the computation each time a topo-
logical change occurs. Since the computation is restarted each time a topological
change occurs, it would not stabilize if there is an infinite number of topological
changes.

The problem of topology update in a network that eventually stabilizes was
studied in [ACK90], where a topology update algorithm that has O{n) amortize
message complexity per topological change is given, However the algorithm re-
quires that the network would eventually stabilizes, otherwise the information
about the stable links does not stabilize.

Our main contribution is a new simple topology update protocol, which does
not use unbounded counters. Qur protocol uses a well-known method in which
packets “age” as they travel through the network by using a “hop counter”. The
“hop counter” method is very widely used in practice, due to it simplicity and
efficiency (see [Tan81]). It is worth mentioning that the correctness and the com-
plexity of the protocol depends on the implementation of this method, different
implementations of the “hop counter” method lead to protocols which are either
extremely inefficient (e.g. require exponentlal communication overhead), or, at
least theoretically, incorrect.

Our protocol operates in a realistic network model, which takes into con-
sideration the buffer limitations of lower-level data link protocols. This implies
that only a constant number of messages are in transit on a link at a given time.
Thus, the implementation of the protocol requires bounded buffer space in the
lower-level data-link protocols. This consideration, although crucial in practice,
has not received the proper attention in the previous theoretical literature.

We introduce a general technique that enables to control communication

Optimal Time Byzantine Agreement for
t<n/8
with Linear Messages

Arkady Zamsky, Amos Israeli and Shlomit §. Pinter

Dept. of Electrical Engineering, Technion, Israel

Abstract. The Byzantine Apgreement problem provides an abstract
setting in which methods for tolerating faults in distributed systems may
be explored and perhaps influence practical designs. A Byrantine Agree-
ment protocol is a distributed protocol in which one distinguished proces-
sor called the source broadcasts some initial value to all other processors.
The protocol is designed to tolerate up to ¢ faulty processors. The receiv-
ing processors should agree on some common output value. In case the
source 18 correct the output value should be egual to the source’s initial
value. The quality of a Byzantine agreement protocol is measured by the
following parameters: the ratio between the total number of processors n
and the number of faulty processors ¢, the number of rounds of message
exchange needed to reach an agreement, and the communication com-
plexity, given by the size m of the maximal message. This paper presents
a Byzantine Agreement protocol with n = 8 - 1 + 1, optimal number of
rounds (namely min{f + 2,t + 1} where f is. number of actual faults),
and messages of linear size (namely m < n + O(log n)). This is the first
protocol that reaches Byzantine Agreement in optimal time, tolerates
t = O(n) faults and uses messages of linear size. All previous protocols
that stop in optimal time and iclerate ¢ = O(n) faults require messages
of size at least Q{n?), The new protocol uses a novel technique called
Reconstructed Traversal which is based on the Reconstruction Principle
and on the Coordinated Traversal protocol.

1 Introduction and Problem Statement

The Byzantine Agreement problem [12] provides an abstract setting in which
methods for tolerating faults may be explored and perhaps influence practical
designs. A Byzantine Agreement protocol 18 a distributed protocol in which one
distinguished processor called the source broadcasts some initial value to all
other processors. The broadcast value v is drawn [rom a finite domain W. For
simplicity we assume that W = {0,1} where 0 is called the default value. The
protocol is desighed to tolerate up to ¢ faulty processors. The receiving processors
should agree on some common output value. In case the source is correct the
output value should be equal to the source’s initial value, We say that the system
reaches Byzentine Agreement (BA) if the following two conditions hold:

188

in Section 6, and Section 7 contains the complexity analysis. We conclude, in
Section 8, with a discussion on the convergence time measure.

2 Models of Networks

The following are three well-known theoretical models for networks:

- Static networks- Every message that is sent is eventually delivered.

— Fail-Stop networks- The sequence of messages that are delivered, over a
specific link, is a prefix of the sequence of messages that were sent on the
link.

— Dynamic networks- Each node has, for each of its links, a status variable
which is either DOWN or UP. The node can send a message on a link only if
the link’s status is UP. The fact that a link status is UP does not imply that
a message sent on that link is eventually delivered. A dynamic network is
eventually stable if there exists a time after which no link changes its atatus.

Commeni: The data link layer, ensures that if a node on one side of the link has
the link’s status as U/ P then, from some time and on, the node on the other side
has the link’s status U P as well. This means that if status,(v,u) = UP from
some time and on, then eventually status,(u,v) = UP.

The data link layer in a communication network has only a fixed number of
buffers, therefore only a fixed number of messages can be in transit over a link.
The network models above do not ensure that the number of messages in transit
over a link is bounded. We define the non-pumping resiriction that ensures that
only a constant number of messages are sent simultaneously over the same link.

Non-pumping restriction- For every message that is received an acknowledgment
is sent. The link is said to be busy from the time a message is transmitted un-
til an acknowledgment for it is received. No message is sent while the link is busy.

Note that the non-pumping restriction implies that at any time there are at
most two messages in transit over a link.

A link in a fail-stop network is connected if every message that is sent on
that link is eventually received, otherwise the link is disconnected. A link in a
dynamic network is connected if for every time ¢, there exists a time £, £ > ¢,
such that at time { the link is UP and if infinitely many messages are sent then
eventually a message is received, otherwise the link is disconnected. A fail-stop
network is equivelent to a dynamic network if every link has the same status
(connected or disconnected) in both networks. The following theorem ensures
that a protocol for a non-pumping fail-stop network can be transformed to a
protocol for a non-pumping dynamic network,

Theorem 1. 4 non-pumping fail-stop network, with space complerity S, can be
simulated by an equivalent non-pumping dynamic network, with space complezity

o(8).

134

messages to a subset that are “believable” in the sense that for each one, there
are enough other messages with timestamps inside a small enough interval.
Finally, we have the following simple theorem which we state without proof.

Theorem 8. If there is a consensus Jg.n"otocol in AC with z > (e + a3)/ay and
with real time from start lo finish bounded above by R, then there is an atomic
broadcast protocol in AC with latency bounded above by L ~ asR+ e + dac.

4 Directions for further research

¢ Is there an algorithm for multi-source consensus with Byzantine failures
in the TA model, assuming synchronized start, that runs in time o(fCd)?
O(fd)? Same question but for ‘timing” failures (see Section 2.1)?

s What are good bounds for the real time complexity of atomic broadcast in
the TA model?

¢ How well can clocks be synchronized for very inaccurate “hardware” clocks
(C >3/2)7

¢ Can the algorithm for atomic broadcast in the AC model presented in sec-
tion 3 be generalized for authenticated Byzantine failures with n < 2f to
give an algorithm running in time with -,;2-_9-}- as the coefficient of e? (See

[SDC90).)

5 Acknowledgments

We thank Faith Fich for her comments.
References

[ADKM92] Y. Amir, D. Dolev, S. Kramer and D. Malki. Total ordering of messages
in broadcast domains. Manuscript.

[ADLS90] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time to
reach agreement in the presence of timing uncertainty. MIT/LCS/TM-435,
November 1990. Also: STOC 1991.

[AL89] H. Attiya and N, A. Lynch. Time bounds for real-time process control in
the presence of timing uncertainty. Proc. 10th IEEE Real-Time Systems
Symposium, 1989, pp. 268-284. Also: MIT/LCS/TM-403, July 1989,

[BI8T7] K. Birman and T. Joseph. Reliable communication in the presence of fail-
ures. ACM TOCS, Vol. 5, No, 1 (February 1987), pp. 47-76.

[BGT90] N. Budhiraja, A. Gopal and S. Toueg. Early-stopping distributed bidding
with applications., Proc. 4th Int’l. WDAG 1990.

[CASDS86] F. Cristian, H. Aghili, R. Strong and D. Dolev. Atomic broadcast: from
simple message diffusion to Byzantine agreement. Proc. 15th Int. Conf.
on Fault Tolerant Computing, 1985, pp. 1-7. Also: IBM Research Report
RJ5244, revised October 1989.

[CM84] J. M. Chang and N. Maxemchuck. Reliable broadcast protocols. ACM
TOCS, Vol. 2, No. 3 (August 1984), pp. 251-273.

[CD86] B. A. Coan and C. Dwork. Simultaneity is harder than agreement. Infor-
mation and Computation Vol. 91, No. 2, 1991,

100

Since the fail-stop protocol is non-pumping, a send_message(m) action can
occur only when m; is empty (since otherwise the link is busy). We focus on
links that are connected since a disconnected link is allowed not to deliver any
packet, making the simulation trivial. For a connected link, every packet that is
gsent is either delivered or the link changes its status to DOWN. (If the link is
DOWN and does not change to UP then the link is disconnected.) Furthermore,
every connected link that at time ¢ is DOWN will eventually be UP. In the
simulation the transmitter retransmits the message every time the link changes
from DOWN to UP until eventually the message is acknowledged. Therefore,
every message, sent on a connected link, is eventually forwarded to the fail-stop
protocol. Since the simulation requires only two more variables per station, the
space complexity is O(S). 0

3 The Topology Update Problem

3.1 Eventual connectivity and stability

Bach node v € V has a variable status(v,u), for cach of its links (v,u) € E.
The value of this variable, denoted by status,(v,u), is either UP or DOWN,
according to the status of the link (v, u).

— Eventually stable link- A link (u, v) is an eventually stable, if there exists
a time t , such that for any time £, { > ¢, both the values status,(u,v)
and status,(v,u) do not change. (Le. from some time on, either the link
is constantly UP or the link is constantly DOWN). Note that in this case
statusy(u,v) and status, (v, u) are equal.

— Eventually connected link- A link e = (u,v) is eventually connected, if

" for any time ¢, there exists a time {, { > ¢, such that at time { the status of e
is UP (on both sides), and if infinitely many messages are sent on e, starting
at £, eventually a message is received.

~ Eventually connected path- A path that is composed from eventually
connected edges.

— Eventually connected sub-network - A maximal set of nodes that any
two of them have an eventually connected path to between them.

3.2 The specification for the topology update and data update

The topology update protocol has in each node v € V a variable status(u,w},
for every link (u,w) € E. The value of status(u, w), denoted by status,(u,w),
is either UP or DOWN. Intuitively, status,(u,w) reflects the estimation of v
about the status of link (u,w). The topology update protocol “succeeds” if for
every stable link e = (u,w), there exists a time T, such that at any time ¢,
t > T, status, (u, w) = status,(u, w), for every node v that is in the eventually
connected sub-network of u. (In other words, if (u, w) is an eventually stable link,
then every node in the eventually connected sub-network of u will eventually have
the “stable” status of the link (u,w).)

191

A data update problem has a single source with a data variable. The value
of the data variable may change over time. The data variable is stable, at time
t, if for any time %, { > ¢, its value does not change. The aim of the data update
protocol is to enable each node to learn the value of the data variable. The
specification of the data update problem, which resembles the specification of
the topology update problem, is as follows.

1. There is one source with a variable RealData.

2. Every node v has a variable data, whose value is denoted by data,.

3. If at time Ty the variable RealData is stable, there exists a time Ty > T,
such that at each node v, which is in the eventually connected sub-network
of the source, the value of data, equals value of RealData at time T and
data, does not change at any time ¢ > T4,

It is clear that the topology update problem can be reduced to 2m data
update problems. For each edge (u,?) € E, u would be the source for the status
of (u, v) and the the source for the status of (v, u). Note that if (u, v) is eventually
stable, then the two statuses are eventunally equal.

4 Complexity Measures

The dynamic network model that we consider an infinite number of topological
changes may occur. Clearly, the more topological changes happen, the more
messages that the protocol will send, therefore we would like to relate the two.
The amortized message complerily is the number of messages sent per topological
change. However, we show that this criteria, by it self, is not sufficient to capture
the “true” complexity.

In a dynamic network that does not stabilize the communication paths may
be disconnected for arbitrary long periods of time, For this reason it is impossible
to define for such networks the time complexity in terms identical to that of
stable networks or dynamic networks that eventually stabilize. We introduce the
notion of convergence time, which is the equivalent of time complexity in static
networks. We show a trade-off between convergence time and the amortized
message complexity (see Section 7.1).

The convergence time in a dynamic network has two components. One com-
ponent i3 a bound on the propagation delays over a link, associated with the
physical delay in the transmission media. The second component is a bound on
the recovery delay of a link, i.e. time between the failure and subsequent recovery
of a link. This component is associated with the time required to reinitialize the
transmission media and establish communication between two nodes, The two
components are orthogonal one to the other and a simple way to express such
a time system is by a linear combination of the form aw + bp, where = is the
maximal propagation delay and p is the maximal recovery delay.

Comment: Analogously to the definition of time complexity in static asyn-
chronous networks, the values of 7 and p are used exclusively for the purpose of

192

the analysis of the convergence time of the protocol, but not for proving its cor-
rectness. Intuitively, they are evaluated in terms of some symbolic global clock;
nodes do not have access to that global clock and do not know those values, and
the protocol should work for any values of # and p.

We define a partial ordering among all linear combinations of 7 and p as
follows: ay# 4+ byp is greater than asw + byp iff @y > ag and b; > by, Formally,
each event has a label ar + bp that is subject to the constraints below:

— Message delay: For every message that is sent at time labeled #, and is
eventually received at time labeled 7 holds, ¢t < 7 < t + 7.

-~ Link Failure: For each link that fails at time labeled ¢ and recovers at time
labeled 7, holds t < 7 < ¢t + p.

— Initial time: Each change in the value of RealDate in the source node is
labeled by am + bp, such that & < 0 and b < 0. (We are interested to measure
the time only after the data stabilizes.)

- Causality: Any two events @,y at the same node, such that z causally
precedes y, the labeling of = is strictly less than the labeling of ¥, according
to the partial order defined above.

The convergence event at node v is define as the update of data at node v
such that from that time and on, data, = RealData. The convergence time of
a data update protocol is define as the maximum labeling of the convergence
event at v, over all v which are eventually connected to the source.

5 Topology Update Protocol

We describe a protocol for the data update problem, which is equivalent to the
topology update problem. The code of the data update protocol is described
for a non-pumping fail-stop network, but in fact it is running in a dynamic non-
pumping network, Theorem 1 guarantees that the protocol can be transformed to
a protocol for a non-pumping dynamic networks with the same space complexity.

The data update protocol we describe satisfy the non-pumping restriction.
In order to simplify the protocol each node v has a variable CanSend, [u], for
each (v,u) € E. The value of CanSend,[u] is TRUE if the link (v, u) is not busy.
Node v can send a message to u only if CanSend, [u] is TRUE.

Our protocol is composed from two protocols that run concurrently., The
first protocol, the eventually stable protocol, performs the computation based on
the assumption that the network is eventually stable. The second protocol, the
dynamic protocol, performs the computation based on the assumption that the
network never stabilizes (i.e. the network is not eventually stable).

5.1 The Interface with the lower layer

We would like to write the protocol for the non-pumping FAIL-STOP model,
However we would like to analyze the complexity with respect to the number of

193

topological changes. For this reason we introduce an interface with a lower layer,
that informs our protocol about topological changes. The work of [AAG87] is
one implementation of such a lower level.

The interface between our protocol and the lower level is the following. A
node can be in one of two states, working or aboriing, The lower level guarantees
the following properties:

Property I: At each node, every change from working to aborting can be
mapped to a unique topological change in the network.

Property IL: The period of time in which State = aborting is finite and its
length is bounded by A.

Property III: Each node, whose eventually connected sub-network includes
links that are not eventually stable, changes from State = working to State =
aborting (and vis versa) an infinite number of times.

The work of [AAG87] implements such a lower level and guarantees that

A = O(nr).

5.2 The Eventually Stable Protocol

The eventually stable protocol is composed from a static protocol that con-
structs a spanning tree, then broadcasts on the tree the value of the data with
a hop counter. (The hop counter is incremented by each node that forwards the
message.) The static protocol is compiled through [AAG87] to run in dynamic
networks that eventually stabilize.

5.3 The Dynamic Protocol

The dynamic protocol assumes a knowledge of n, the number of nodes, or at
least an upper bound on the number of nodes. It also assumes that the source is
continuously generating messages. Each message is composed from the data value
and a hop counter. A node that receives a message, increases the hop counter
by one, if the hop counter is not n it forwards the message to all its neighbors.
The source initializes the hop counter to 0 in the messages it generates. The hop
counter ensures that each message is forwarded only a finite number of times.
Recall, from the specification of the data update problem, that each node v has
a variable data,. The value of data,, in our protocol, is the last data value that
v received. :

The source generates a new message if at least one topological change oc-
curred since the previous message it generated. To control the message complex-
ity of the dynamic protocol, each node forwards a message only if a least one
topological change occurs since the previous message it sent. A node is informed
about such a topological change, when the eventually stable protocol enters
state aborting. The protocol, as described above, requires an infinite number of
buffers to store the messages that a node has to forward. To reduce the number
of buffers, messages that are in the gueue of the sarne outgoing link are coalesced.
Two messages, with an identical data value are coalesced to one message and

194

the hop counter is the minimum of the two hop counters. Two messages, with
different data values, are replaced by the message that was received later. This
enable the protocol to use only one buffer per edge.

The algorithm in each node is the following. Each node has one buffer for the
data value and each link has a buffer that holds a hop counter. When a message
arrives, if its value is different then the current data value in the node, we replace
the data value to the new data value and put its hop counter (incremented by
one) in all the link buffers. If the message that is received has the same data
value as the node’s data value, then each link buffer is updated to the minimum
between its current value and the message’s hop counter value (incremented
by one). When a message is sent (i.e. the node enters state aborting) the hop
counter on the link is set to @, The code of the data update protocol is presented
in Figures 3 and 4.

Remark: It seems essential to have a hop counter on every edge rather than
cne hop counter for the entire node. The reader can verify that keeping one hop
counter per node, either the minimum or maximum of the node’s buffers, yields
an incorrect protocol. It seems that the main problem, in such a protocol, is that
edges that are not eventually connected have an undesirable effect on eventually
connected edges.

5.4 Combining the protocols

Each node » has a value d, which is the last value that it received in either
the dynamic protocol or the eventually stable protocol. For each link we have
a hop counter which is the minimum between the one in the dynamic protocol
and the eventually static protocol. In what follows we elaborate more on this
construction. '

The eventual stable protocol builds a tree, and broadcasts on it the value
of RealData from the source. This is done, as in the dynamic protocol, with
a hop counter that is incremented by every node that forwards it on the tree.
In each node, those messages, are treated as messages in the dynamic protocol.
{More precisely, the node checks if the data value equals its data value, if not, it
replaces its data value by the new data value, and updates buffers of the links
with the new hop counter. Otherwise it only updates the link’s buffers to the
minimum between the new and old hop counter.) Therefore at any point in time,
each node v has one value data, which it “believes” to be the value of RealData.

Note that once the eventually stable protocol terminates, all the nodes in
the tree have their data value set to RealData. This is since the last message
overrides any previous data value.

6 The Correctness of the Protocol

In this section we prove the correctness of the protocol. The proof is split to two
cases, one when the data value stabilizes and the other when it does not. If the
data value never stabilizes, then the protocol is correct by definition (since no

195

claim is made in this case), For this reason in the rest of this section we assume
that from sometime on the data value stabilizes. The intuition for the correctness
proof is the following. Either the network is eventually stable or infinitely many
topological changes occur. If a finite number of topological changes occur the
network eventually stabilizes, and the eventually stable protocol succeeds to
broadcast the correct output. If infinitely many topological changes occur, then
the source generates infinitely many messages in the dynamic protocol. Since
the data stabilizes, only a finite number of the messages have an incorrect value.
The following claims are essential for the correctness of the protocol.

1. Eventually, no message with an incorrect data value is sent.
2. Messages with a correct data value reach all the nodes in the eventua]ly
connected sub-network.

Let Ty, be a time such that no stable edge changes its status after Tpin.
Such a time exists by the definition of stable edges. Assume that at time Tsa1e,
Tysavte > Tpin, the value of the data at the source is stable and equals X ¢apie-
Let Vionn be the eventually connected sub-network that includes the source, and
E.onn the set of edges in this sub-network.

We say that the eventually connected sub-network of the source is eventu-
ally stable if all the edges in E,,nn are eventually stable. Note that if it is not
eventually stable, then there exists at least one edge in Econyn that changes its
status an infinite number of times.

The following notations are used in the proofs:

NODES(D,t) The set of nedes v, such that v has an eventually connected path
to the source {i.e. v € Vy4n5), and at time t have date, = D.

" MESSAGE(D,t) The set of messages that are in transit at time ¢ (i.e. where
sent before time ¥ and received after time t), and were sent on an edge
e € E.onn with data value D.

BUFFER(D,t) The set of buffers, buffer,{u], such that v € NODES(D, 1)
and (v, u) is an eventually connected edge.

MIN-HOPS(D,t) A function that computes the minimum of the hop counters
in the messages of M ESSAGE(D,t) and in the buffers of BUFFER(D,1)
(an empty buffer is considered to have hop counter n + 1).

The following lemma shows that the hop counter of obsolete data value has
to increase, and thus eventually disappear from the network.

Lemma 2. Assume that the eventually connected sub-network of the source is
not eventually stable. Let D be o data value, such that D # X,iapte, and & be o
tame, such that t > Toiapte. If MIN-HOPS(D,t) <. n then there exisis a time i,
> t, such that MIN-HOPS(D,%) > MIN-HOPS(D,1).

Proof. Let M = MIN-HOPS(D,t). A buffer changes its hop counter if either a
message with a new value is received, or, a message with the same value and a
smaller hop counter is received.

196

In both cases the buffer is updated to the message’s hop counter plus one,
All the messages in M ESSAGE(D,t) have hop counter at least M. This im-
plies that no message in M ESSAGE(D,t) can decrease the hop counter of
a buffer to a value less than M 4 1. Therefore, at any time ¢, ¢; > f, any
buffer in BUFFER(D,t,) has hop counter at least M and any message in
MESSAGE(D,t,) has hop counter at least M, since the source did not gener-
ated new messages with data value D between ¢ and ¢;. This implies that the
value of MIN-HOPS(D,t1) is at least M,

For every buffer,[u], such that buffer,[u] € BUFFER(D,t), there is a
time %, ¢, > , such that CanSend,[u] is TRUE (since the link (v, u) is even-
tually connected). Since the network is not eventually stable, by Property III,
there exists a time £, ¥, > t,, such that v enters state aborting at time {,. The
dynamic protocol of node v, at time f,, sends a message to u and empties the
buffer.

Let t; be the maximum ,, where v € NODES(D,t). At time 3, all the nodes
in NODES(D,t) performed a SendMessage of each buffer in BUFFER(D,t)
at least once. Therefore, from time ¢ to time ¢3, every buffer in BUFFER(D,t)
changed its value to § at least once. Since all the messages in M ESSAGE(D,t)
have hop counter at least M, the buffers in BUFF ER(D, t3) have a hop counter
of at least M + 1. (_Recall that an empty buffer is considered as hop counter n+1.)
At any time tg, ta > tg, the number of hop counters in each of the buffers of
BUFFER(D,#;)is M + 1.

The messages in M ESSAGE(D,t;) are sent on edges in Eony, which are
eventually connected edges. The fail-stop model guarantees that such messages
are delivered eventually, Therefore, there exists a time £a > #3 such that all the
messages M ESSAGE(D,t;) are received. Since at time ¢; the minimum hops
of BUFFER(D,t;) is M + 1, any message sent between ¢; and ¢3 has a hop
counter of at least M + 1. At ¢35 the hop counter in each of the messages of
MESSAGE(D,t3)is M + 1. |

The next lemma states that eventually no message with incorrect data is in
transit over a link in E.,,,. Therefore, no message with incorrect data can be
delivered after that time.

Lemma 3. Assume that the eventually connected sub-network of the source is
not eventually stable. Let Tyyop1. be o time such that af any time ¢, t > Thiable,
RealDate = Xeyapie. There exists a time T, 11 > Tyrapie, stich that at any fime
ta, ta > Ty, MESSAGE(D,t3) = 0, for any D # X,sanie

Proof. Let 7; be a time such that for any time ¢, ¢ > r,, MIN-HOPS(D,t) > i.
We need to show that r; exists, for 0 <7 < n+ 1. Clearly, we can set 79 = Tyzani0,
hence, 1 exists. Lemma 2 guarantees that if ; exists, and ¢ < n, then 713 exists.

Therefore, there is a time T}, such that for each data value D, D # X a8,
MIN-HOPS(D,t1) = n + 1. Clearly, if MIN-HOPS(D,T;) = n + 1, then no
messages with data value D is sent. 0

197

Let T, be the time after which no message with value different from X,;q8:6
is received. Lemma 3 guarantees that such a time exists. We still need to show
that messages with data value X444, eventually reach each node v € Veonn.

What we show is that the hop counter in a node w will at some time reflect
the distance from the source to w in E.,ny. Note that we do not assume that
the tree used in the eventually stable protocol is a BFS tree. This property is
guarantee by the behavior of the messages sent in the dynamic protocol. (Note
that the eventually stable protocol cannot invalidate this, since we are always
updating the hop counter to the minimum between the previous one and the
new one.)

Lemmad. Assume that the eventually connected sub-network of the source is
not eventually stable. If at timet,t > T, at node v, data, = X,s451e, butfer,fv] =
k and (u,v) is an eventually connected edge in the sub-network of the source, then
there exzists a time £, § > t such that datay = Xssapie and butfer,jw] < b+ 1,
for all (v,w) € E.

Proof. Since {u,v) is an eventually connected edge, there exists a time ¢; > ¢
such that CanSend, [v] is TRUE. Since an infinite number of topological changes
oceur in the sub-network of the source, by Property III, there exists a time %3,
ta > t1, such that node u enters state aborting. At time {3 the dynamic protocol
sends a message on link (u, v). Since all the messages after T, have value X451,
and the hop counter can only decrease while the data value does not change, the
hop counter of buffer,[v] is at most & at 25.

Since the link is an eventually connected edge, and the fail-stop property
of the data link guarantees that this message will be delivered. Therefore there
exists a time t3, t3 > ?3, such that the message reaches v. The protocol at v
updates each of the buffers to the minimum between k -+ 1 and the previous
value of the buffer and sets data, to X,:apt.- O

We allow the hop counter to grow till n, therefore the message with the
correct data value will eventually reach all the nodes in Vionn. The following
lemma formalizes this.

Lemma 5. Assume thet the eventually connected sub-network of the source is
not eventually stable. There exzists a time t > Ty such that every node v, v in
the sub-network of the source, has data, = X,uapte.

Proof. The proof is by induction on the distance between node v and the source.
The base of the induction is trivial. The step of the induction is Lemma 4. 0O

So far we have shown that if there is an infinite number of topological changes,
then each node in the eventually connected component of the source has the
correct value. A much simpler case is when only a finite number of topological
changes occur in the eventually connected sub-network of the source.

Lemma 6. Assume thot the eventually connected sub-network of the source is
eventually stable at time T'. There ewists a time t > T such that every node
v € Veonn has datay = X,tapie-

198

Proof. Consider the last message that the eventually stable protocol broadcasts.
First its data value is X,;551.. We need to show that the last message received
by each node v € Vionn, is the one from the eventually stable protocol. (Thm
would imply that the last message contains the correct value.)

On each particular link the messages are delivered in FIFO order. This implies
that a message a node sent during an aborting state, or before it, arrive before
any message sent during the following working state. Therefore the last message
that each node would receive would come from the eventually stable protocol
and would have the value X 11 O

We can now state the correctness theorem.
Theorem 7. The data update protocol satisfies the data updale specification.

Proof. If the network is eventually stable then, the eventually stable protocol
terminates with the data value in each node set to the correct value, by Lemma
6. If the network does not stabilized Lemma 5 ensure that the dynamic protocol
succeeds. O

7 The Complexity of the protocol

In this section we discuss the time and message complexity of the topology up-
date protocol. The communication complexity is measured by amortized message

complexity. The time complexity uses the convergence time, as defined in Section
4,

7.1 Amortized Message Complexity

Theorem 8. The amortized message complexity of the protocol is O(m).

Proof. The amortized message complexity of the eventually stable protocol is
O(m). In the dynamic protocel a node send a message only when it enters
state eborting. By Property I this change in state can be mapped to a unique
topological change. This implies that the the amortized message complexity of
the dynamic protocol is O(m). 0

7.2 Time Complexity

We start by analyzing the case that the eventually stable protocol succeeds in
broadcasting the correct value.

Lemma9. If the sub-network evenitually connected to the source is eveniually
stable then every node v in that sub-network recetves the correct value of the data
after at most O(A + nw) time units of time since last topological change in that
sub-network.

199

Proof. The eventually stable protocol requires time A to move from the state
aborting to working. Building a tree and broadcasting on can be done in O(n)
(see [Awe8T]. : 0

The other case is that the eventually stable protocol does not succeed. In
this case we have a bound on the time between two events that a node enters
state aborting.

Lemma10. If the eventually stable protocol does not succeed then, for every
node v that has an eventually connected path to the source, at most O(A+nw+p)
time units poss between two consecutive times v enters state aborting.

Proof. Agsume that a node enters state aborting at time ¢. By Property II, at
time £, { = ¢ + A + O(n7) the eventually stable protocel terminates. Since the
eventually stable protocol did not succeeds, node v entered state aborting before
{. Since v entered state aborting, a new topological change has occurred, this
adds to the time at most p. Hence, the difference between two consecutive times
v enters state aborting is bounded by O(A4 + nr + p). O

Recall the definitions of Tyasie, Xstasie and T, from Section 6. At time Ty q51.
the value at the source is X,iq1¢, and never changes after this time. 77, is the
time after which no message with value different from Xy, i5 received.

Lemmall. Assume the sub-netwoerk eventually connected to the source is not
eventually stable. The number of time units between Toiapie ond Ty 18 al most
O(nd + n?n + np). '

Proof. Let D be a data value, such that D # X ;551 Let 7; be a time such that
for any time ¢, ¢ > 7;, MIN-HOPS(D,t) > i. In the proof of Lemma 3 we show
_that, for 0 < i < n+1, ©; exists and 79 = Ts1apte- Lemma 2 requires, in the worst
case, that every node sends one message in the dynamic protocol. Therefore, by
Lemma 190, the value of 7,41 — 7 is at most (A 4- nw + p). Hence, 741 — 7o i8
at most O(nA + n?r + np) and the total time is O{nd + n’r + np). o

Lemmal12. Assume the sub-network eventually connected to the source is not
eventually stable. Let v be a node in the eventually connected sub-network of the
source, At eny time t,t > Ty + O(n’n + np + nd), date, = Xyrabie-

Proof. Each application of Lemma 4 requires that a node sends a message on an
eventually connected link. In order for a node to forward a message on a link it
has to enter a aborting state. By Lemma 10, at most O(A + nx + p) time units
are required until v enters an State = aborting, and is able to broadcast on an
eventually connected link. Therefore, after O(k(nw + p+ A}) time units all the
nodes at distance k from the source have already updated their value, Since the
distance between a node and the source is at most n the Theorem follows. DO

This establishes the following theorem about the convergence time of each
node.

200

Theorem 13. The convergence time of ¢ node v is at most O(n*n + np+ nd).

Proof. If the network never stabilizes then the theorem follows from Lemma 11
and Lemma 12, Let T = T, + O(nd + n®r + np). If the network stabilizes
at time £, t > Ty, the dynamic algorithm already succeeded, and the theorem
follows. If the network stabilizes at ¢, t < T, then, by Lemma 9, at ¢ + O(nr)
the eventually stable protocol succeeds. d

The construction of {AAG87] show that A = O(nn), therefore,

Corollary 14. The convergence time of a node v i3 at most O(n’r + np).

8 Discussion on convergence time

The following is an interesting variation of the topology protocol. Each node
» has two values: dy, the last value that v received during a eventually stable
protocol, and dz, the last value that it received during the dynamic protocol.
If the value of dy, from the eventually stable protocol, was received during the
current working state, then date, equals d; else it equals to dy. This modified
protocol can be proven, in a very similar to the correctness proof of our protocol,
to solve the topology update problem. Namely, either there are a finite number
of changes in the network (then dy = data, and data, does not change) or
an infinite number of changes (then, eventually, d has the correct value). This
modification also preserves the O(m) amortized message complexity.

There is a subtle drawback to this protocol. If there are only a finite number
of topological changes, then it can be the case that at some node v, d1 # da.
If an additional topological change occurs at », then the value of data, changes
to dg. If the number of changes is less than n, the time until the value in v is
correct and does change any more can not be bounded (although it is finite), The
convergence time of the new protocol captures this phenomena. The convergence
time is greater than kw4 mp, for any & and m < n. (Since at any time kr +mp
the value of d; may be incorrect.) In the original protocol the convergence time
is bounded by nw + mp, also for m < n. This shows the that of the definition
for convergence time enables to capture notions that the previous complexity
measures could not express.

In some cases we can trade the convergence time and the amortized message
complexity. Consider the dynamic protocol. The amortized message complexity
of the dynamic protocol can be reduced to O(m/k), if each node forwards a
message only after k times the node entered an aborting state. In this case the
convergence time would increase by a factor of k.

References

[AAGS8T] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static network
protocols to dynamic networks. In 28" Annual Symposium on Foundations
of Computer Science. IEEE, October 1987.

201

[ACK90] B. Awerbuch, I. Cidon, and S. Kutten, Optimal maintenance of replicated

[AE83]

[AG8S)

[AG91]

[AGR]

information. In Proceedings of the 31st Annuval IEEE Symposium on Foun-
dations of Computer Science (FOCS), 5t. Louis, Missouri, pages 492502,
1990.

Baruch Awerbuch and Shimon Even. A formal approach to a communication-
network protocol; broadcast as & case study. Technical Report TR-459, Elec-
trical Engineering Department, Technion-1.1.T., Haifa, December 1983.
Yehuda Afek and Eli Gafni. End-to-end communication in unreliable net-
works. In Proceedings of the 7" Annual ACM Symposium on Principles
of Distributed Computing, Toronto, Ontario, Canada, pages 131-143. ACM
SIGACT and SIGOPS, ACM, 1988.

Yehuda Afek and Eli Gafni. Bootstrap network resynchronization. In Pro-
ceedings of the 11** Annual ACM Symposium on Principles of Distributed
Computing, pages 295-308, August 1991.

Yehuda Afek, Eli Gafni, and Adi Rosen. The slide mechanism with applica-
tions in dynamic networks. to appear in PODC 1992,

[AMS89] B. Awerbuch, Y. Mansour, and N. Shavit. Polynomial end-to-end commu-

[Awe8T]

[HEKS89]

[SG89]

[Tan81]
[Vis83]

nication. In 30" Annual Symposium on Foundations of Computer Science,
pages 358-363, 1989, :
Baruch Awerbuch. Optimal distributed algorithms for minimum weight span-
ning tree, counting, leader election and related problems. In Proceedings of
the 19" Annual ACM Symposium on Theory of Computing, pages 230-240.
ACM, May 1987.

Amir Herzberg and Shay Kutten. Efficient detection of message forwarding
faults. In Proceedings of the 8*® Annual ACM Symposium on Principles of
Distributed Computing, Edmonton, Alberta, Canada, pages 339-353, 1989,
John M. Spinelli and Robert G. Gallager. Broadcasting topology information
in computer networks. IEEE Trans. Comm., May 1089. to appear.

A. Tannenbaum. {omputer Networks. Prentice Hall, 1981.

U. Vishkin. A distributed orientation algorithm. IEEE Trans. Info. Theory,
June 1983.

202

RealData /* The real data velue at the source*/
Neighbors /* The set of neighbors of the source */
CanSend == Array [Neighbors | of Boolean /*TRUE —> can send a message to u */
When entering state gborting

FOR u € Neighbors DO

IF CanSend[u] THEN SendMessage ({RealDats,0}) to u

Fig. 3. The algorithm for the source in the dynamic protocol

data /* The data value as v knows it*/

Neighbors /* The set of neighbors of a node */

CanSend = Array [Neighbors] of Boolean /*TRUE —> can send a message to u */

buffers = Array [Neighbors] of hops /*The hops number that will be sent on that link*/

When entering state aborting
FOR u € Neighbors DO
IFbuffer[u] # # AND CanSend[u] THEN
SendMessage ({data,buffer{u]}) to u
bufferfu] := @
END

For & ReceiveMessage ({NewDataValue , hops}) from u
IF NewDataValue # date THEN
date ;= NewDataValue
FOR u € Neighbors DO buffer[u] := NEXT(hops) END
ELSE
FOR u € Neighbors DO buffer[u} := MIN-BUF(NEX T(hops),buffer[u]) END

Function MIN-BUF (x,y)
IF y = § THEN Return x
ELSE Return MIN(x,y)

Function NEXT (x)
IF x = n THEN Return @
ELSE Return x+1

Fig. 4. The algorithm for node v, that is not the source, in the in the dynamic protocol.

Memory Adaptive Self-Stabilizing Protocols *
(Extended Abstract)

Efthymios Anagnoston makis@csri.toronto.edu
Ran El-Yaniv ran@theory.toronto.edu
Vassos Hadzilacos vassos@db. toronto.edn

Department of Computer Science
University of Toronto
Toronto M5S 1A4, Canada

Abstract. We present a token-based diffusion scheme that forms the
basis of efficient self-stabilizing protocols for a variety of problems in-
cluding unigne naming, network topology, token management. For the
model where processors’ initial knowledge about the network is restricted
only to their neighbours, we introduce the concept of memory adaptive
protocols. In these, once the system stabilizes, the size of the memory
used by each processor is a function of the actual network size — even
though the system may have been started in a state where each proces-
sor “thinks” that it is embedded in a network much larger (or smaller)
than the actual one. For this model, we develop memory adaptive self-
stabilizing protocols for the problems mentioned above that stabilize
in time Ofnloglogn), where n is the number of processors. For the
model where processors also know an upper bound D on the diame-
ter of the network and an upper bound on n, we develop bounded-
memory self-stabilizing protocols for the same problems that stabilize
in O(min{D,n}) time. All our protocols are based on a token diffusion
scheme, and are uniform, in the sense that processors with the same
number of neighbours execute the same program.

1 Introduction

A protocol is self-stabilizing for property P if it will eventually satisfy P, even
when the processors participating in the protocol start their computation from
an arbitrary state. This means that the correctness of the protocol (described by
property P) does not depend on the initial values of variables or program coun-
ters. Self-stabilization is an attractive form of fault-tolerance because it provides
a distributed system with the means to tolerate fransient errors, the type of er-
rors that corrupt volatile memory of the system momentarily but do not change
the programs themselves. System configuration changes (addition of new proces-
sors, removal of communication edges, etc.) can be viewed as transient “errors”
and thus self-stabilizing protocols are very well-suited for dynamic networks.

* Research supported by the Natural Sciences and Engineering Research Council of
Canada.

204

Self-stabilizing protocols were introduced in [Dij74]. Recently there has been
a great deal of interest in the subject (for example, [BGW89], [BP89)], [AG90],
[AKY90}, [DIM90], [DIM91}, [1J90], [KP90], [AV91], [APVI1] and more). Many
self-stabilizing protocols assume the existence of a distinguished processor, or the
existence of distinct IDs for the processors. This may be undesirable, especially in
the case of dynamic networks where we would like processors to join the system
or drop out of it without requiring special intervention for the system to adapt
to the new configuration. Thus, in this abstract we focus on uniform protocols,
i.e., those where all processors run the same “code”, parameterized only by the
number of their neighbours in the network. As was already shown by Dijkstra
in his seminal paper on the subject, for many important problems in distributed
computing there are no uniform deterministic self-stabilizing protocols, except
in special cases {(cf. [BP89]). Consequently, we are forced to resort to randomized
protocols. :

In this absiract we describe a simple self-stabilizing “diffusion protocol with
echo” which, roughly speaking, allows a processor to disseminate some piece of
information to all processors and receive some feedback from them. Using this
diffusion mechanism we can develop protocols for a variety of problems, includ-
ing: (1) The Unique Naming (UN) problem where each processor must select an
ID different from all other processors’. (2) The Ranking problem, a special case
of UN where the unique names of the processors must be the integers 1,2,...n,
where 7 is the number of processors in the system. (3) The Topology problem,
where each processor must compute the network in which it is embedded. (4) The
Token Muanagement problem, where a unique token circulates through the sys-
tem in a fair way and can be seized by any processor that wishes to capture it.
(8) The Spanning Tree problem, where each processor must select a subset of its
adjacent edges so that the set of all edges selected forms a spanning tree of the
network. (6) The Leader Election problem, in which exactly one processor (the
“leader”) enters a distinguished state.

In this abstract we concentrate on UN. The diffusion mechanism can be used
to derive efficient self-stabilizing protocols for all the other problems, as well as
problems not enumerated in the above list. Space restrictions do not permit us
to describe these protocols in this abstract.

To state the properties of our UN protocols and compare our results to
related work we classify system models according to two criteria: the knowledge
that processors have about the system, and their use of memory. Regarding the
knowledge of processors we distinguish two models: ‘

Myt Processors have no global information about the system; each only knows
its neighbours.

Mp n: In addition to their neighbours, processors know an upper bound I on
the diameter d of the network, and an upper bound N on the number n of
processors in the network.

Regarding the use of memory, we distinguish three models:

1. Bounded protocols: The amount of memory used by the protocol is bounded.

205

2. Adaptive protocols: The amount of memory used by the protocol after sta-
hilization is a function of the actual network.

3. Unbounded protocols: The amount of memory used by the protocol is un-
hounded.

A desirable solution for a problem would be a bounded protocol that works
in the My model. For many interesting problems, however, such solutions do not
exist. For instance, in any protocol that solves the UN problem, each processor
must have at least log n bits (to store its name), and thus no bounded protocol
can exist if the processor knows nothing about the number of processors in the
system. (A bound on memory would imply an upper bound on the number of
processors!) Similar comments apply to several other problems, such as Ranking
and Topology.

This realization has led us to define memory adaptive protocols which, in
a scnse, are the best thing one can hope for in the My model. In a memory
adaptive protocol, each processor has access to an unbounded amount of memory.
However, after the system stabilizes, the amount of memory used is bounded from
above by a function of the actual network. For instance, consider a self-stabilizing
UN protocol for the My model and suppose that the protocol is started at a
state in which the processors think that they are embedded in a huge network
(and thus their initial names are very long). If the protocol is memory adaptive,
not only must processors make sure that their names are distinct, but they must
also reduce their initially long names to ones whose size is a function of the
actual number of processors.? In other words, we view the nodes of the network
as processors that dynamically request memory from their “environment” when
the need arises and release memory back to their environment when they no
longer need it.

In this paper we present a memory adaptive protocol for UN. To our knowl-
edge, the definition of memory adaptive protocois and the existence of self-
stabilizing protocols with this property for the My model are original contribu-
tions. All other self-stabilizing protocols for the Ay model with which we are
familiar are not memory adaptive; the amount of memory used eventually stops
growing but depends on the initial state in which the protocol started (and hence
can be arbitrarily large, even if the network is small). Our memory adaptive pro-
tocol stabilizes in O(n loglogn) time. Its space complexity (i.e., the amount of
memory used per processor after stabilization) is O(n*logn) bits.

Another property of the memory adaptive protocol is that it uses a modest
amount of intermediate space, by which we mean the amount of space used
until stabilization, including the space of the initial state, In our protocol this
intermediate space is expected to be at most the maximum of the space in the

2 The memory adaptive UN problem has some similarities to the “renaming problem”
studied in [ABD*87] and [BD89], but the two problems are incomparable: In the
renaming problem @ fraction of the processors may be permanently faulty, while in
our case all processors are subject to a transient failure. In addition, in the renaming
problem processors have some knowledge about the network (they know n and the
maximum number of faulty processors t}.

206

initial state (for which there is no & priori bound) and twice the space used
after stabilization (which, as we have stated, is bounded by O(n%logn)). A
final feature of the protocol is that we can decrease the stabilization time from
O(n loglogn) to essentially any superlinear function of n (for example, n log* n),
at the expense of increasing the intermediate space, but with no increase in the
space after stabilization.

In addition to memory adaptive protocols for the My model, we also present a
bounded UN protocol for the Mp x model. This protocol stabilizes in O(min{D,
n}) expected time. By comparison, the fastest UN self-stabilizing protocol for the |
Mp,n model previously known stabilizes in O(n) expecied time (cf. [DIM91)).

To summarize, the main contributions of this paper are:

— A simple self-stabilizing diffusion mechanism that can be used to derive self-
stabilizing protocols for a variety of problems.

— A memory adaptive UN protocol for the Ay model that stabilizes in
O(n loglogn) expected time (to be more precise, in O(n(l + loglogn —
loglog(A + 1))) where A is the maximum degree in the network), based on
the diffusion mechanism. :

— A UN protocol for the Mp y model that stabilizes in O(min{D,n}) ex-
pected time, also based on the diffusion mechanism.

1.1 Comparison to Related Work

Among the many recent papers on self-stabilizing protocols, the most relevant
to our work are [AKY90], [AV91], and [DIM91].

Awerbuch and Varghese [AV91] present a general transformation that can
turn a given protocol for a problem P to a self-stabilizing protocol for P, pro-
vided that P and the given protocol satisfy certain properties. In particular, P
must be what the authors call a “non-interactive” problem, i.e., a problem that
can be described as a relation between inputs and outputs. Of the problems
listed earlier, Token Management is not in this category.® In addition, the given
protocol must be deterministic, thus precluding the use of the transformation
to obtain uniform solutions for problems known not to be solvable by uniform
deterministic protocols. Finally, the transformation requires a time bound for
the given protocol, which renders it inapplicable in model My: Any information
about the time complexity of a protocol for a non-trivial task would imply some
information about the network (e.g., a bound on its size, or the length of its
diameter), which violates the assumptions of model My, Thus, our techniques
can be used to solve problems that are beyond the power of Awerbuch and
Varghese’s transformation.

® Although the transformation of [AV91) does not direcily yield a solution to the
TM problem, it can be used in combination with other methods to obtain such a
solution. In particular, one can combine the leader election protocol of [AV91] with
a leader-based TM protocol, such as is described in [DIM90], to obiain an O(D) TM
protocol.

207

In [AKY90] and [DIM91] the authors focus on self-stabilizing protocols for
the closely related Spanning Tree and Leader Election problems. The protocols
in [AKY90] require processors to have unique names* and stabilize in O(n?)
expected time in the My model and in O(D?) expected time in the Mp n
model. The protocols in [DIM91] do not assume unique names and stabilize in
O(d) expected time in the Mp x model and in O(dlogn) expected time in the
My model, In this paper it is also shown how to transform a Spanning Tree
protocol to a Ranking (and hence UN) protocol, but the transformation incurs
a penalty of O(n) for the stabilization time. In both papers, the protocols are
bounded in the M p » model, but unbounded (nof memory adaptive) in the M,
model,

Our protocols in the Mp y model and for all the problems listed at the be-
ginning of the introduction stabilize in O(min{D, n}) time. Thus, our protocols
for UN and Ranking stabilize faster than the Ranking protocol in [DIM91]. This
comparison also holds for the Topology problem.® On the other hand, if D is
not an accurate bound for the actual diameter d the protocols of [DIM91] for
Spanning Tree and Leader Election stabilize faster than ours.

In terms of space, our protocols for the My rmodel are memory adaptive,
while those of the other two papers are unbounded. However, for the Mp y
model our protocols are not as good as those in [AKY90] and [DIM91], as they
require more memory and considerably longer messages.

The rest of this extended abstract is organizecd as follows: In Section 2 we
describe the important aspects of the model of computation we use. Section 3
contains the self-stabilizing diffusion mechanism. In Section 4 we give the mem-
ory adaptive protocol for the My model, while the next Section sketches its
correctness proof. Finally, in Section 6 we outline the protocol for the Mp v
model, give our conclusions and list some open guestions.

2 Model of Computation

Without loss of generality we adopt the popular link-register model introduced
in [DIM80]. At the end of this section we show that our protocols also work in
the message-passing model. A communication network is an undirected graph
whose nodes correspond to processors and whose edges indicate which pairs of
processors can communicate directly. Two adjacent processors » and v communi-
cate by means of a pair of unidirectional links. Each. link is modeled as a register
that can only be written by one of the neighbours and read by the other. Ry,
is the register written by w and read by v. We say that a processor owns the

* We have been informed, however, that Lhis assumption can be removed (private
communication, August 1991).

® Although Topology is not explicitly treated in [DIM91], it is not difficult to see
that given a protocol for Ranking one can solve Topology with no increase to the
{asymptotic) stabilization time. Thus, the O(n) Ranking protocol of {DIM91] gives
rise to a On) protocol for Topology.

208

registers into which it can write. We can assume w.l.0.g. that these registers are
atomic (see [Lam86a}, [Lam86b]).

Fach register Ry_., owned by u has a unique port number, denoted P,(v).
This is used by « to distinguish R, from all the other registers it owns. We
assume that v knows P, (v), since we can require u to write that number into a
component of R,_,, every time that it writes into that register.

Each processor u follows an algerithm which can be thought of as an au-
tomaton having a set of states, and whose individual steps allow u to read a
neighbour’s register, write a register it owns, or change its own state. The effect
of a read step by processor u is to modify u’s local state (we can think of this as
copying the value read into a local variable of u}. The value written by a write
step of u is determined by u’s local state. A step that just changes u’s state
models local computation by 4. The new state of u depends on the old state
and, possibly, on random choices (when u follows a randomized algorithm).

We assume that the computation of each processor u proceeds in cycles,
each of which consists of a sequence of steps in which u accomplishes all of the
following in the specified order: u reads the values of all registers owned by its
neighbours; it changes its own state; and it writes into the registers it owns. We
do net assume that the write steps of a cycle write the same value into all of u’s
registers.

A protocolis a collection of algorithms (i.e., automata), one for each processor
in the network. A global state of a protocol is a function mapping each processor
u to a state of u, and each register to a value of that register. An ezecution of a
protocol starting from a global state S is an infinite sequence of alternating global
states and processor steps, beginning with state S, so that the application of each
step to the preceding global state results in the following global state. Since we
want to model asynchronous systems, we do not impose any restriction on how
steps of different processors are interleaved in an execution, aside from requiring
that each processor takes infinitely many steps. A protocol is self-stabilizing
with respect to property P if every execution has a suffix which contains only
states that satisfy P. We say that an execution stabilizes as soon as it has reached
a state so that P holds in that and all subsequent states.

Following [AFL8&3], we define a round of an execution to be a minimal sub-
sequence of contiguous steps in which each processor has completed at least one
cycle.® The main measure of time efficiency for a self-stabilizing protocol is the
time required for stabilization. More formally, the stabilization time for a deter-
ministic (resp. randomized) protocol is the maximum (resp. maximum expected)
number of rounds until an execution stabilizes starting from any initial state.
The space complexity of the protocol can be expressed as the number of bits
required to store the state of each processor. The communication complexity is
measured in terms of the number of bits of the registers. A protocol is uniform

% We should point out that sometimes a round is defined to be a minimal subsequence
of steps in which every processor has taken at least one step, rather than a cycle. We
find it more convenient to define it using cycles. In all the comparisons we made in
Section 1.1 the results were normalized in accordance with our definition.

200

if all processors with the same degree (number of neighbours) have the same al-
gorithm, Note that in our model we do not assume that processors have unique
names. In this paper we restrict our attention to uniform protocols and drop
the adjective “uniform” from now on. On the basis of the definitions given in
this section it is straightforward to formalize the notions of bounded, memory
adaptive, and unbounded protocols, and of the My and M p n models discussed
in the introduction. These are omitted from the extended abstract.

Even though our results are for the shared memory model, they can be easily
extended to the message-passing model using the self-stabilizing alternating bit
protocol of Afek and Brown [AB89]. In particular, we can substitute each uni-
directional link register by a copy of the randomized self-stabilizing alternating
bit protocol. In the message passing model each message of our protocol has
size O(n?logn) bits in the My model, and O(n log N') bits in the Mp x model.
Furthermore, if we make the common assumption of unit (or any bounded) ca-
pacity channels ([APV91]) then the stabilization time of our protocols remains
the same as well.

3 Self-Stabilizing Diffusion with Echo

In this section we describe a useful primitive which is the basis of our other
protocols, namely the self-stabilizing diffusion with echo. Informally, a diffusion
primitive enables a processor to disseminate a piece of information to all other
processors. In addition, the echo mechanism allows the processors to respond to
the information they received by sending some feedback to the initiator of the
diffusion. Diffusion protocols have been used extensively in distributed comput-
ing (cf. [DS79], [Awe88], [AS88], [AGI0}, [APVYI] etc.).

We concentrate here on the My model and at the end of the section we
show how to do diffusion on Mp n. Roughly speaking, to diffuse a piece of
information, processor u creates a token containing that information and some
additional control information. It then sends copies of that token to its neigh-
bours (by writing into its registers), which send further copies to their neighbours
and so on, until copies of the token have been received by all processors, where-
upon the token copies are returned retracing their path in reverse, with the
feedback information attached. When the initiator of the diffusion receives all
token copies it knows that the diffusion has been completed and has feedback
from the processors.

We refer to the copy of a token possessed by a processor as a foken tuple. A
token tuple has the form {name, dir, path, info). Field name contains a “name”
for the token. For example, in the application of diffusion to the UN protocol,
this field contains the 1D of the processor that created the token and a random
bit. Field dir is a bit that indicates whether the token tuple is traveling forward
(F) of backward (B). Field path is a list of the port numbers through which
the token tuple has passed; it is used so that the token tuple can retrace its
route on the way back. Field énfo contains the information that the initiator
u of the diffusion wants to disperse, and can also be used for any feedback

210

information that processors wish to give to u. Since this field is application-
specific we do not discuss it further in this section, and treat token tuples as
triples (name, dir, path).

The basic data structure used by each processor v in this protocol is a con-
sistency table, denoted Tab,.” In this table, u keeps information about all the
token tuples that have passed through it and which it has not returned yet. The
table indicates to w which token tuples it must give to which of its neighbours,
and which token tuples it expects back from which of its neighbours.

Consider now a processor v that receives a token tuple ¢ with name v and
dir = F from neighbour w. If v does not contain a token tuple with name v, v
accepls t; otherwise v rejects . Processor v informs w of the fate of ¢ (acceptance
or rejection) by writing this information (among other things) in Ry_,,. K v
rejects £ it does not take any further action in response to the receipt of that
token tuple from w. I, on the other hand, v accepts ¢ then v appends the port
number P, (w) through which v received ¢ to the path field, resulting in token
tuple t'. Processor v inserts ' into Tab, and sends t' to all its neighbours.

The token tuple t' remains in Tab, until it is time for v to return it to w.
This occurs as soon as v receives back all the copies of token tuple ¢’ that it sent
to its neighbours and were accepted by them.® In particular, if v finds out that
all token tuples ¢ that it sent were rejected, then it is time to return ¢’ to the
processor from which v received t'. To return ¢/, v removes from Tab,, ¥, changes
the direction bit to B, removes the last port number from the path field of ¢/
(this is w’s port number at v} and sends the resulting token tuple through that
port to w. _

When processor « that initiated the diffusion of a token £ with name v receives
back all token tuples it sent to its neighbours that were accepted, the diffusion
of that token is completed. Processor u then creates another token and initiates
another diffusion in the same way.

To define the self-stabilizing properties of our diffusion protocol we must
introduce some terminology. Consider a global state S, in which the table of
some processor u contains the token tuple t = {v,d,pi1ps .. .p3), where k > 1.
Let v be the process to which u is conunected via its port p,; if v does not have
a port with number pg, v is undefined. We say that ¢ is a dangling token tuple
in global state S iff:

— v 18 undefined; or
~ v is defined and the table of v either does not contain the token tuple ¢/ =
{v, F,pip2 .. .pr—1); or it contains ¢/, but # is (recursively) dangling.

A global state S is legal iff it satisfies the following three invariants:
I1: No table in § contains two token tuples with the same name.

" The use of such tables for self-stabilizing protocols originated in [AE91]. Similar
data structures were used in [SG89] for topology update and in [AKP91] for routing
protocols. However, both these applications did not involve self-stabilization.

8 Recall that the neighbours write in their registers whether they accepted a token
tuple ¢ or not, so ¢ can know which of the token tuples it sent were accepted.

211

12: For each processor u, the table of u in 5 contains exactly one token tuple
with path component equal to the empty sequence. (That is, for each u, there is
a unique token initiated by u.)

I3: There is no dangling token tuple in 5.

We wish our diffusion protocol to be self-stabilizing with respect to legality.
It is easy to see that, if we start our protocol in a legal state, then no illegal state
will ever be entered. However, since it is possible for the protocol to be started
in an arbitrary state, some actions must be taken by the processors to eliminate
violations of these three invariants.

It is straightforward to eliminate violations of invariants Il and 12, since these
can be locally checked by each processor. In particular, a processor can eliminate
violations of I1 by removing from its table all token tuples with the same name
except one. Also, it can eliminate a violation of 12 by removing all token tuples
that have an empty path component except one, and initiating a diffusion if it
happens to have no token tuple with an empty peth component.

Eliminating violations of I3 requires more work, since these cannot necessarily
be detected locally by any one processor. To eliminate dangling tuples each
processor u does the following: It discards from Tab,, any tuples with meaningless
data. Also il u receives back from a neighbour a token tuple ¢ that it is not
expecting (according to the information in T'ab,), then w ignores ¢. Finally, if
Tab, indicates thai u is expecting a token tuple from a neighbour v but v’s
register (Ry—) indicates that v knows nothing about this tuple (and thus will
never return it to u), then u assumes that is has received the token from w.
These “house-cleaning” activities guarantee the following: (1) No processor waits
for tokens that will not be returned to it, thereby avoiding indefinite waiting.
(2) Every dangling token tuple will be eliminated from the system very soon,
since such a tuple can move forward for at most n rounds, and will then return
back and be eliminated in at most n additional rounds. It is important to notice
here that Inconsistent token tuple elimination is done only one way, backwards.
This way we avoid endless cycles of eliminating token tuples while their “front”
keeps visiting the same parts of the network and their “tale” is eliminated. This
would be the case if we were applying two way elimination.

The following claim states the self-stabilizing property of the diffusion pro-
tocol and its stabilization time:

Claim 1 Within at most 2n rounds after the diffusion protocol starts, the global
state will be legal and will remain legal thereafter.

In addition, the diffusion protocol satisfies the following liveness properties:
Claim 2 Fach diffusion terminates within at mosi 2n rounds after its iniialion.

Claim 3 Consider the execution of the diffusion protocol after siabilization has
been reached. If the diffusion of a token t with name v by some processor does
not overlap in time with the diffusion of a token with the same name v by «
different processor, then the table of each processor will conlain o foken tuple
with name v at some time during the diffusion of L.

212

Diffusion in MD,N

We can use a similar protocol for diffusion in the Mp ny model. However, the
additional knowledge in this model {the bounds I} and N) can he exploited to
achieve better protocols. There are two major differences.

First, since processors know the bound D on the diameter, they can use D
to determine when to stop the diffusion of a token tuple and send it back. This
is done instead of diffusing each token tuple “as far as it will go”, i.e., until it
reaches a processor all of whose neighbours have already received a token tuple
with the same name, as is done in the My model. In addition, invariant Il is
implemented by applying the shortest path resolution rule; i u receives a token
tuple with the same name as a token tuple already recorded in the table, but
the new token tuple came from a strictly shorter route (as can be determined by
comparing the lengths of the path fields of the two tuples) then the old tuple is
deleted and the new one kept; otherwise the new tuple is discarded. In addition to
enforcing I1, this rule also guarantees that every node receives each token tuple
through one of the shortest paths between it and the processor that initiated
the token. Consequently, each processor is guaranteed to receive a token tuple
within D rounds after its diffusion was initiated. These modifications cause each
diffusion to take time of order O{min{D, n}) rounds, rather than O(n) rounds.

The second difference is that since processors know the bound N on the
number of processors, they can bound the size of their consistency tables. T'ab,
has space for N token tuples, one for each processor. Note that when the system
reaches a good global state (within 2-min{ D, n} rounds), each table will contain
no more than n token tuples. If u receives a token tuple ¢ with a different name
than all the token tuples in Tab,, but T'ab, is full, then u ignores ¢. This can
only happen in the first 2 - min{D, n} rounds of the system, i.e. until it enters a
legal state.

4 A Memory Adaptive UN Protocol for the My Model

In this section we describe a memory adaptive self-stabilizing UN protocol for the
minimum information model My, where processors do not have any bound on
the number of processors n, or the diameter of the network d. After stabilization,
the mermmory consumed by each processor is O(n®logn) bits, even if initially the
processors have large estimates for the network (and therefore large IDs). The
stabilization time of our protocol is O(n loglogn) expected rounds. In fact, we
can replace n loglogn by any superlinear function, for example nlog* n or even
na(n), where a(n) is the inverse of Ackermann’s function. Such a speed-up,
however, is attained at the expense of an increase in intermediate space, i.e., the
amount of space used until stabilization and memory adaptation occurs.

In the memory adaptive protocol each processcer u is in one of three phages:

Phase 1: « diffuses a token containing its present [D and collects the IDs of
all other processors (these are provided as the “echo” to the d1ﬂ'u310n) and
waits for all others to do so.

213

Phase 2: o computes its rank (i.e., the number of IDs less than or equal to its
own) and sets its ID to its rank.

Phase 3: u diffuses continuously a token with its ID, collects all the IDs and
checks that the set of IDs covers exactly the range {1,2,...n,}, where n, is
the number of different IDs from phase 1. After stabilization every processor
remains forever in phase 3.

The name field of the token diffused by w in both phases 1 and 3 contains
the triple (id,, isRanky, b,) where id, is the current ID of processor u, isRank,
is a bit with value 1 if u is in phase 3 (in which case id, is actually the rank
of u) and value 0 otherwise, and b, is a bit randomly chosen by u at the be-
ginning of each diffusion. The info field of each tcken tuple contains the triple
(dif fusionlDone, ranking Done, I DList), where:

— dif fusionlDone is a bit set to true at the beginning of each diffusion and
set to false if the token tuple visits a processor that has not yet completed
its first diffusion of phase 1.

— ranking Done is a bit set to true at the beginning of each diffusion and set to
false if the token tuple visits a proecessor that has not completed its phase 2.

— IDList contains the list of different IDs of the processors visited by the
token tuple. It is set to the ID of the processor initiating the diffusion at
the beginning of each diffusion; each processor visited by the token tuple
attaches its ID to the list before forwarding it to its neighbours,

Processor u maintains its current estimate of the network size n,. This is al-
ways set to a value greater than the number of u’s neighbours. If at some point
u determines that there is “something wrong” (e.g., some processors have the
game 1D — we shall be more precise shortly}, then it initiates a Resef. Reset is
a primitive ([Fin79], [APV91]) that can be roughly defined as follows (a formal
definition is given in the full paper): If any processor invokes Reset then even-
tually all processors will adjust their state (in some specific manner, depending
on the application), and will restart their computation from the adjusted state,
with the requirement that no processor restarts its computation until all have
adjusted their state. In our case, when processor u adjusts its state on Reset, it
must set its estimate n, of the network size to n2,,,, where npqeq is the maxi-
murm estimate of all processors. n,,., becomes available to the processors via the
Reset primitive. We discuss how to implement Reset at the end of this section.

The main reason for initiating a Reset is the discovery that there are multiple
processors with the same ID. The detection of conflicting 1Ds is accomplished
via the use of the random bit b,,. If two processors have the same name then in
constant expected number of diffusions their tokens will have different random
bits. When a processor u receives a token tuple whose name containg the same
ID but a different random bit as some other token tuple contained in Tab,
then u discovers the existence of processors with the same ID and enters the
state conflict. When u finds itself in state con flict at the end of a diffusion, it
initiates a Reset. We can now describe in more detail the algorithm followed by
each processor w.

214

In phase 1, u begins by setting its ID, id,, to an element chosen randomly
from the set {1,2,...,n2}. It then repeatedly diffuses a token tuple with the
name and info fields as described above. At the end of each diffusion if w finds
itself in state conflict (i.e., has detected that there are two processors with the
same ID as its own), it initiates a Reset. The diffusions of phase 1 are repeated
“until all token tuples returned at the end of a diffusion have the di f fusionl.Done
component of the info field set to true. This marks the end of phase 1.

Given the properties of diffusion and the way the dif fusionl Done compo-
nent of the info field is manipulated, no processor completes phase 1 until all
of them have done at least one diffusion. This is important because when pro-
cessors determine their rank in the next phase, they must all do so on the basis
of the same list of existing IDs (I D Lists).

In phase 2, u determines its rank, i.e., the number of different processor 1Ds
less than or equal to its own. Processor u obtains a list of the different IDs in
the echo of the first diffusion of phase 1 (cf. field IDList in the info field). It
is important to use the IDList of the first diffusion, because in this way all
processors compute their ranks on the basis of the same list of 1Ds.® Processor
u then sets id, to its rank, sets its estimate n, to the number of elements in
IDList, and proceeds to phase 3. Notice that memory adaptation occurs in this
phase.

In phase 3, u repeatedly diffuses a token tuple just as in phase 1 (except that
the isRank, bit is now 1}. At the end of each diffusion, if u finds itself in state
eon flict, it initiates a Reset. In addition, u checks if all token tuples returned
from the diffusion have the rankingDone bit of the info field set to true. If
so, then it knows that all processors have completed phase 2, and therefore the
set of IDs in the JDList of the returned token tuples must be precisely the set
{1,2,...,n,}. If not, u initiates a Reset. The reagon for this check is that the
adversary may start the system in a state where each processor thinks that has
unique IDs which are not ranks. In this case there will never be a name conflict
but, if this check ig not performed, the system will never adapt and the protocol
will not be memory-adaptive.

® The purpose of the first diffusion in phase 1 is to collect the list of IDs. All subsequent
diffusions in that phase serve merely as a “synchronization barrier” to ensure that all
processors have completed their first diffusion before proceeding to phase 2. Strictly
speaking these diffusions do not need to carry around the I D List in the in fo fields.
In fact, each processor can base its ranking on the I3 List of any one of the phase 1
diffusions except the last one. (Since the last diffusion of phase 1 by one processor
may overlap diffusions of other processors that are already in phase 2, the I.DList
collected in that diffusion may contain IDs that are ranks - as opposed to the original
IDs of phase 1 - and can not be used to correctly calculate the processor’s rank.)
For specificity, we assume that each processor uses the [List of its first diffusion
of phase 1.

216

Implementation of the Reset

We now briefly discuss the Reset primitive. Reset primitives have been used
extensively in network protocols (cf. [Fin79], [AweB8], [APV9]] etc.). The usual
implementation of Reset (cf. [APV91]) begins with the diffusion of a token with
name “reset” (thus, all processors that initiate a Reset diffuse the same token).
Each processor u keeps track of the processor v from which u received the first
reset token tuple; v is u’s parent. When the diffusion is completed, the initiator
of the Reset sends a message to its children to signal that they can adjust their
state and restart “normal” computation. We say that a processor is in the reset
phase in the period between the receipt of a reset tcken tuple and the subsequent
receipt of the message signaling to restart its computation.

Unfortunately, this simple implementation is not adequate for our purposes
since, when processors restart, they must know the maximum estimate npqe of
all processors for the size of the network. We accomplish this by modifying the
previous implementation in the following manner: The “reset token” diffused by
PLOCESSOr U uses N, as its name, Now, consider a processor v that receives a reset
token tuple with name n,,.

- If v is not in the reset phase and n, > n, then v sets n, = n, and relays
the reset token tuple; if n, < n, then v initiates its own Reset with n, as
its reset token name.

— If v is in the reset phase when it receives the reset token tuple and n, > n,
then v sets n, = ny, relays the new reset token tuple to its neighbours as
described before, and changes #ls pareni {o u; otherwise v ignores the new
reset token tuple.

By using these rules, the reset token (or tokens) with the maximum name {i.e.,
estimate) “dominates” all others and its tuples visit all processors. In this way,
all processors become aware of the maximum estiimate, which is what we wanted.
When a processor u finishes the Reset it squares its estimate (ny == nZ) and
starts in phase 1.

5 Sketch of Correctness Proof

One of the difficulties in proving that the protocol eventually stabilizes is that
if it is started at a bad global state, “small” regions of the network may incor-
rectly determine that they constitute the entire network and perform memory
adaptation (i.e., execute phase 2 of the protocol) prematurely. This seems like
a dangerous situation because it could potentially cause processors to oscillate
between a memory adaptation period, followed by a period of Resets to increase
the estimate when it is discovered that the memory adaptation was done pre-
maturely. If such oscillatory behavior is likely, stabilization may be prevented.
Fortunately, the probability of this occuring repeatedly vanishes, Call a memory
adaptation glebal, if it involves all processors in the network. Before we give the
main lemma we need the following preliminary claims.

216
Claim 4 Fach reset lasis at most 2d + n rounds.

Claim 5 If two nodes u and v have the same ID then within at most O(n)
ezpected number of rounds some node of the network will order reset.

Claim 6 After a resei the system within 4n rounds will either do global memory
adaptation or it will do another reset.

Note that 4n is the maximum number of rounds needed for the completion
of phases 1 and 2.

Lemma 1. If n processors choose random IDs from the set {1,2,...N%} where
N > n, then with probability greater than some constant all IDs will be unique.

Proof: By elementary probability, the probability that all processors choose
distinet IDs is

N?—1N*—2N’-3 N’-n+l_ NZ—NH)N_1

N2 N2 N2 o N2 - (N2

Therefore p > (N? = N)/N3)N > (1 - 1/N)Y — ¢~} as N — oo. In the worst
case where N =2, p> %. a

p:

Lemma?2. If after a Reset there exist n' < n different IDs in the network then

a Resqt will be performed before global memory adaptation with probabilily >
1-—-2n-n,

Proof: (sketch) Partition the set of processors into equivalence classes, where
two processors are in the same class iff they have the same ID. Let S, S2, ..., 5o
be the equivalence classes. The probability that all processors in S; choose the
same random bit for their diffusion is 21715, Thus, the probability that name
conflict among the processors in S; is not detected by the end of phase 2 is
< 21-15:t Therefore, the probability that name conflict among processors in all
equivalence classes is not detected by the end of phase 2 is < H,’;‘;IQ]"”'S"i =
gn'-n,

Consequently, the probability that name conflict is detected (and hence Reset

is initiat}ad) by the end of phase 2 (and hence before memory adaptation) is
>1-2""".0

Say that a global state is legal if all processors have distinct IDs. Informally
speaking, if processors have small estimates for the size of the network then the
global state is bad: The processors will choose their IDs from small domains and
many will pick the same ID and so with high probability the global state will
be illegal. The previous lemma then implies that the probability of staying in a
bad state forever is small: If the state is “very” illegal;i.e., there are few distinct
IDs relative to the size of the network (n' < n}, then Reset will occur with high
probability, and this will improve the state, since processors will increase their
estimates. If, on the other hand, the state is “almost” legal, i.e., there are lots

217

of distinct IDs relative to the size of the network (n’ & n), then global memory
adaptation has a better chance of occurring before a Reset, and such premature
memory adaptation will cause the global state to regress. However, precisely be-
cause there are lots of distinct I1Ds, the resulting global state, although worse, will
still remain close to being legal. This, intuitively, is the reason why oscillations
of the type described above are avoided.

Lemma3. Let 4 be the mazimum degree of the network. Starting from any
state, the probebilily thal the system will stabilize in
O(n(1 + loglogn — loglog(A + 1))) rounds is greater than a constant that does
not depend on the system.

Proof: (sketch) We can assume that the maximum estimate is at least A+1
because otherwise after one reset it will be so. Consider the following experiment:
resets occur in a row without total memory adaptation until each processor has
a unique name. When the estimate of each processor exceeds n then with high
probability the processors will choose distinct IDs (lemma 1). The maximum
number of consecutive resets required for the estimate of each node to exceed
n is-bounded by r = loglogn — loglog(A + 1) because the estimate is squared
each time,

We d1st1ngu1sh between two stages in the experiment. Stage 1, lasts as long
as the maximum estimate for the size of the network is < t = n'/ 2_pif3, Stage
2 starts after the estimate becomes larger than ¢ and ends when the processors
choose unique IDs. In stage 1, after each reset the number of different names »’
can not be larger than ¢2. By Lemma 2, the probability of a reset before global
memory adaptation in this stage is at least p = 1 - 2~ —n®t

‘The probability that enough resets without total memory adaptation occur in
a row until the system goes to sta;e 2 is at least p” which after some manipulation

can be shown to tend to e="2"" | which converges to 1 as n — co. By Claims

4, 5 and 6 we conclude that this period lasts at most O(n - (1 + r)) rounds. So
we proved that with probability that tends to 1 the system will reach stage 2
in at most O(n - (1 + r)) rounds. After reaching stage 2, if the processors have
unique IDs then we are done. Otherwise by Lemma 2 with probability at least
1~ 271 g reset will be ordered within 4n number of rounds and the processors
will have an estimate of the graph of order £2(n). By Lemma 1 this implies that
with probability greater than some constant all processors have distinct IDs.
Hence with probability greater than some constant that does not depend on the
network the system will reach a legal state after at most O(n - (1 +#)) rounds. O

The following theorem summarizes our main result and its proof follows from
the previous lemma.

Theorem4. The expected number of rounds until the system stabilizes is

O{n(1 + loglog n — loglog(A + 1))). After stabilization each processor uses a
most O(n?logn) bits, The intermediate space used by each processor until sta-
bilization is expected to be the mazimum of the initial space and twice the space

218

used after stabilization. 'O

6 Conclusions

We presented a general token-based diffusion protocol that yields interesting self-
stabilizing protocols for many problems. We considered two models: the model
where each processor knows nothing about the network (AMy), and the model
where the processors have some bounds on the diameter and the size of the
network (Mp n). However, our results can be used in other “intermediate”
models as well such as the model My, where processors know N > n but do not
know D > d. In this extended abstract we presented only the protocols for the
Unique Naming problem but similar protocols work for a large variety of other
problems including interactive tasks such as Token Management. For the Ay
model we presented the first memory adaptive protocol. This protocol stabilizes
within O(nloglogn) expected number of rounds and after stabilization it uses
space of O(n?logn) bits, where n is the actual size of the network.

A similar but simpler protocol works for the Mp x model. The main differ-
ences are:

- Since a bound D is known each diffusion, including the “resets”, take time
O(min{n, D}).

— Since N is a known bound on n, after each conflict all the processors choose
new names from the set {1,2,..., N?}, and hence after each reset there is a
constant probability that all the names will be unique.

The complete description is postponed for the full version where we prove
the following.

Theorem 5. The above protocol for UN in Mpn stebilizes within
O(min{n, D}) ezxpected number of rounds.

Some problems that remain open deserve further consideration. The first
and most tantalizing is whether there exists a protocol for the model My (a
bound on n is known) or even the Mp y model with minimum stabilization time
of order d, where d is the unknown actual diameter of the network. Another
problem is that, although our protocols are fast, their message complexity is
high (O(rlog N) bits}. Can this be reduced while keeping the protocols fast? Is
it possible to develop memory adaptive protocols by using simpler techniques
than the ones nsed in this paper?

10 Tf processors increase their estimate by setting it to 2"m== (instead of nZ,,,) after
each Reset, the double logarithms in the time bound become iterated logarithms,
but the expected intermediate space complexity becomes the maximum of the initial
space and n times the space after stabilization.

219

Acknowledgments

We are grateful to Jan Pachl for helpful discussions. We also wish to thank Boaz
Pat-Shamir and the anonymous referees for their comments.

References

[AB89]

Y. Afek and G.M. Brown, Self-Stabilization of the Alternating-Bit Protocel.
IEEE Proc. on Reliable Distr. Systems, pages 80-83, 1989,

[ABD*87] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk.

[AE91]

[AFL33]

[AG90]
[AKP91]

[AKY90]

[APV91]
[AS88]

[AVO1]

[Awe88]‘

[BD89]

[BGW39)
[BP89]
[Dij74]

[DIMS90]

Achievable cases in an asynchronous environment. In FOCS, pages 337-
346, 1987,

E. Anagnostou and R. El-Yaniv. More on the Power of Random Walks:
Uniform, Bounded Sel-Stabilizing Protoccls. In Distributed Algorithms,
5th IWDAG, pages 31-51, Delphi, Greece, October, 1991. Lecture Notes in
Computer Science, 579 Springer-Verlag,

E. Arjomandi, M. Fisher, and N. Lynch. Efficiency of Synchronous Versus
Asynchronouns Distributed Systems. Journal of the ACM, 30 (3):449-456,
1983.

A. Arora and M. Gouda. Distributed Reset (Extended Abstract). In Tenth
Conference on FSTCS, pages 316-329, Bangalore, India, 1990.

B. Awerbuch, S. Kutten, and D. Peleg. Efficient Deadlock-Free Routing. In
10th PODC, pages 177-188, 1991.

Y. Afek, 8. Kutten, and M. Yung. Memory-Efficient Self Stabilizing Proto-
cols for General Networks, In 4th IWDAG, pages 15-28, Bari, Italy, Septem-
ber, 1990.

B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-Stabilization by Local
Checking and Correction. In 32rd FOCS, October, 1991,

B. Awerbuch and M. Sipser. Dynamic Networks are as fast as static nét-
works. In 29th FOCS, pages 206-219, 1988,

B. Awerbuch and G. Varghese. Distributed Program Checking: a Paradigm
for Building Self-Stabilizing Distributed Protocols. In 32rd FOCS, October,
1991, :

B. Awerbuch, On the effects of feedback in dynamic network protocols. In
29th FOCUS, pages 231-245, 1988.

A. Bar-Noy and D. Dolev. Shared-Memory vs. Message-Passing in an Asyn-
chronous Distributed Environment. In Proc. of the 8th ACM Symposium on
Principles of Distributed Compuling, pages 307-318, 1989,

G. Brown, M. Gouda, and C. Wu. Token Systems that Self-Stabilize. IEEE
Transactions on Computers, 38, 6:845-852, 1989.

L. E. Burns and J. Pachl. Uniform Self-Stabilizing Rings. ACM Transac-
tions on Programming Languages and Systems, 11, 2:330-344, 1989.

E. W. Dijkstra. Seli-stabilizing systems in spite of distributed control.
Comm. of the ACM, 17(11):643-644, 1974.

S. Dolev, A Israeli, and S. Moran. Self Stabilization of Dynamic Systems
Assuming Only Read/Write Atomicity. In Proc. of the 9th ACM Sympo-
situm on Principles of Distributed Computing, pages 103-117, Quebec City,
Canada, 1990,

[DIM91]
{DS79]
[Fin79]

[L790]

[KP90]

[Lam86a)
[Lam86h)

[SG89]

220

S. Dolev, A.lIsraeli, and S. Moran. Uniform Dynamic Self-Stabilizing
Leader Election. In 5th JWDAG, Delphi, Greece, October, 1991.

E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing com-
putations. IPL, 11(1):1-4, 1979.

8. G. Finn. Resynch Procedures and a Fail-Safe Network Protocol. [EEE
Transactions on Communications, 27(6):840-845, 1979.

A. Israeli and M. Jalfon. Token Management Schemes and Random Walks
Yield Self Stabilizing Mutual Exclusion. In Proc. of the 9th ACM Sympo-
ssum on Principles of Distributed Computing, pages 119-131, 1990.

8. Katz and K. J. Perry. Self-stabiling Extensions for Message-passing Sys-
tems. In Proc. of the 9th ACM Symp. on Principles of Distr. Computing,
pages 91-101, Quebec City, Canada, 1990,

L. Lamport. On inierprocess communication. Part I: Basic Formalism. Dis-
tributed Computing, 1:77-85, 1986,

L. Lamport. On interprocess communication. Part II: Algorithms. Dis-
tributed Compuling, 1:86-101, 1986.

J. M. Spineili and R. G. Gallager. Broadcasting topology information
in computer networks. IEEE Transactions on Communications, COM-
37(5):468-474, 1989,

Optimal Early Stopping in Distributed
Consensus
{Extended Abstract)

Piotr Berman® Juan A. Garay®? Kenneth J. Perry®

! Department of Computer Science
‘The Pennsylvania State University
University Park, PA 16802, USA
2 Dept. of Applied Math and Computer Science
The Weizmann Institute of Science
Rehovot, 76100 Israel
3 IBM T.J. Watson Research Center
P.O, Box 704
Yorktown Heights, NY 10598, USA

Abstract. The Distributed Consensus problem involves n processors
each of which holds an initial binary value. Af most t processors may
be fanlty and ignore any protocol {even behaving maliciously), yet it
is required that the non-faulty processors evenmtually agree on a value
that was initially held by one of them, This paper presents consensus
protocols that tolerate arbitrary faults, are early-stopping (i.e., run for a
number of rounds proportional to the number of faults f that actually
occur during their execution), and are optimal in various measures.
Qur first contribution is an early-stopping consensus protocol that is
simultaneously optimal in round complexity {i.e., min(t+1, f+2) rounds)
and number of processors (i.e., » > 3t). This settles a long-standing open
question [DRS, 1982]. These bounds were not known to be attainable
even with the use of anthentication. Since consensus is not attainable
with » < 3t we provide a definitive answer to the problem of early-
stopping consensnus. Previous protocols for this problem that achieved
round optimality required n = 2(¢*) [C, DRS], n > 6t [MW] and n > 4t
[BGP). Instrumental in achieving this result is the new safe message
reconstruction technique, which we expect to be of broader applicability.
The previous protocol is round- and processor-optimal, but not effi-
cient. Qur second contribution is a pair of optimal early-stopping consen-
sus protocols that use messages of constant size. No previously existing
early-stopping protocol, whether exactly or only asymptotically optimal
in some measures, has used messages of constant size. The only other
existing early-stopping protocol with constant-sized messages requires
n = 0(t) [C].

Finally, we indicate how to extend one of the previous protocols to be
optimal in total bit (and message) complexity and number of processors.
This is the first protocol that is both optimal in these measures and
early-stopping.

222

1 Introduction and Problem Statement

There are many situations in the management of distributed systems with one
commeon characteristic: a collection of processors must coordinate a decision.
This problem becomes non-trivial when some of the processors are faulty and
cannot be relied upon to faithfully obey a protocol. It is reasonable to at least de-
mand that, regardless of the behavior of the faulty processors, correct processors
can reach an agreement consistent with the initial value of a correct processor.
The Distribuled Consensus problem (and its twin, Byzantine Agreement) [LSP]
provides an abstract setting in which methods for tolerating faults may be ex-
plored and perhaps influence practical designs. The problem can be formally
stated as follows.

We are given a set of processors P of which some unknown subset 7', #7 < ¢,
are faulty and may exhibit arbitrary (Byzantine) behavior. Processors from P—7T'
are called correct. Every processor is given an initial value, 0 or 1. After the
execution of the protocol, the final values of the correct processors have to satisfy
the following two conditions, regardless of the behavior of the faulty processors:

— Agreement: they are all equal.
— Validity: they are all equal to the initial value, if the latter is unique.

We use the standard model of a synchronous network of processors numbered
from 1 to n. The computation performed by the network evolves as a series of
rounds, during which the processors send messages, receive them and perform
local computations according to the protocol.

There already exist many protocols for this problem because there are several
quality parameters that can be optimized: the total number of processors n (as
a function of t), the number of rounds of communication 7, and the communi-
cation complexity given by, e.g., the maximal message size m. Typically, some
parameters are optimized to the detriment of the others, but there is no proof
that all parameters cannot be made optimal simultaneously.

A lower bound of t + 1 rounds of communication has been established for
this problem even if no failures actually occur [DS]. Thus, overcoming potential
faults is expensive, even though, in practice, they are rarely observed. This has
led others to explore ways in which the price of fault tolerance may be reduced.
Hadzilacos and Halpern [HH] have recently concentrated on runs that are failure-
free; they present protocols with optimal number of messages for these runs.
Dolev, Reischuk, and Strong [DRS] are concerned with protocols that take a
nurmber of rounds proportional to f, the number of failures that actually occur,
rather than ¢, the worst-case number of failures. By permitting processors to
stop at different times (instead of simultaneously) they show that early-stopping
protocols are possible and demonstrate a lower bound of min(f+2,¢+1) rounds.
Randomization is another way of circumventing the ¢ 4+ 1 lower bound on round
complexity. In this setting, protocols that run for an expected constant number of
rounds are possible. Feldman and Micali [FM], in particular, have a randomized
consensus protocol that achieves optimal number of processors and polynomial
message size.

223

The contributions of this paper are deterministic early-stopping consensus
protocols that are optimal in various measures. Qur first contribution is the
first consensus protocol to simultaneously achieve optimal early stopping (i.e.,
7 = min(t+1, f+2)) and optimal number of processors (i.e.,n > 3t [LSP]). This
settles a question posed by Dolev ef al. in 1982 [DRS). These (non-authenticated)
bounds were not known to be attainable even when the faulty processors are
restricted not to corrupt a given authentication scheme.* Previous protocols with
optimal early stopping were sub-optimal in processors, namely, they required
n = Q(t?) [C, DRS], n > 6t {[MW] and n > 4t [BGP]. Instrumental in achieving
this result is the new safe message reconstruction technique, which we expect to
be of broader applicability.

Qur protocol is optimal in number of processors and number of rounds, but
not in message size. Our second contribution is a pair of early-stopping consensus
protocols that use messages of constant size. One of our protocols uses single-bit
messages, is optimal in the number of processors, and asymptotically optimal in
the number of rounds. No other early-stopping protocol [BGP, DRS, TPS, W],
whether exactly or only asymptotically optimal in some measures, has used
messages of constant size. To the best of our knowledge, the only other exist-
ing early-stopping protocol with constant-sized messages is also sub-optimal in
processors, i.e., it requires n = O(t?) [C].

Finally, we present an early-stopping consensus protocol that is asymptoti-
cally optimal in the total number of bits transfered (O(nt) [DR]) and the number
of processors, This is the first protocol that is both optimal in these measures
and early-stopping. A consensus protocol with optimal bit complexity is, e for-
tiori, optimal with respect to message complexity. Hadzilacos and Halpern have
recently achieved consensus with (exact) message optimality, but only in the
case of runs that are failure-free [HH]. The rationale is that since failures are
hopefully rare, optimality in the usual case is to be emphasized. However, in
case (even few) failures do occur, their solution requires either a large round
overhead (if asymptotical message optimality is to be maintained), or a loss of
2(n) in message complexity (if early termination is important). The consensus
protocol we present here achieves message optimality in all runs, at the expense
of a reasonably small constant and is early-stopping,.

The remainder of the paper is organized as follows, In Section 2 we present
the early-stopping consensus protocol that is optimal in both the number of
processors and the number of rounds. In Section 3 we present the protocols that
use messages of constant size, while in Section 4 we indicate how optimal bit
(and message) complexity can be achieved, without sacrificing the early stopping
property. Sections 3 and 4 use completely different techniques from those of
Section 2, thus admitting independent readings.

* For the more restricted failure classes (crash, omission), the round and the cor-
responding processozr lower bounds (n > ¢ + 1) are known to be simultaneously
attainable ({LF], [PT), respectively).

224

2 Early Stopping in the Minimum Number of Rounds

The early-stopping consensus protocol of this section is presented as the result of
a sequence of transformations to the Ezponential Information Gathering (EIG)
protocol (a refinement of the original agreement protocol of Lamport et al. [LSP]
due to Bar-Noy et al. [BDDS]). I'irst we introduce the notion of safe decisions
and the rules to obtain them. These rules by themselves allow us to re-derive
a protocol first presented by Waarts [W] which omits certain messages of EIG
and reduces the number of rounds to min(t + 1, f + 3). Then we introduce the
notion of safe message reconstruction, and show that a correct processor may
stop sending messages after it decides becaunse other correct processors can safely
infer the omitted messages. The subtle part is that although the outcome of safe
message reconstruction does not necessarily agree with the suppressed messages,
it nevertheless leads to the same final decision. The safe decision rules and safe
message reconstruction technique, when combined with the EIG protocol, allow
us to prove our first result: an early-stopping consensus protocol that is optimal
in both the number of processors and the number of rounds, i.e., r = min(t +
Lf+2).

In this section we assume that n = 2p + ¢ — 1, where p > ¢ (equivalently,
n > 3t and n — ¢ is odd). We use |o| to denote the length of string o.

2.1 EIG Overview

We firat present a short synopsis of protocol ETG. Processors build trees of the
following form: the set of nodes consists of sequences from P* without repetitions,
and of length at most ¢ + 1; the root is A (the empty sequence); the children of
o, EXT(o), are nodes of the form oj. In each tree, a node o has a value denoted
Val(s). Each correct processor initializes a one-node tree consisting of A and sets
Val(A) toits initial value. Then, for rounds 0,1, - - , ¢ correct processor i applies
the following two primitives to all leaves of its tree:

— Send(c): send Val(e) to all processors (provided ¢ does not appear in ¢).
— Receive(o, j): upon receiving v when j executes Send(s), create node ¢j and
set Val(oj) = v.

Once the tree is constructed, the processors use the rules given below to
compute predicates Dee(o,v) and PDee(o,v) for each node ¢ and v € {0,1}
(we read Dec(e,v) (PDec(o,v)) as “value v is the decision (a partial decision)
for o”):

_ JVallo)=v if ¢ is a leaf,
PDec(o,v) = { #{r € EXT(0) : Dec(r,v)} > p otherwise;
Dee(e,v) = PDec(s,v) A—PDec(o,7).

The final value for the consensus problem is 1 iff Dec(A, 1). Note that Dec(e, v)
implies = Dec{e, ¥), although it is possible that ~Dec(c,0) A - Dec(o,1) holds.

225

Definition1. A predicate 7 at node ¢ is common iff v is true at o in the tree of
every correct processor. A node ¢ is common iff either = Dec(a, 0) A = Dec(a, 1)
is common, or for some v, Dee(o, v) is common.

The following two lemmas express the correctness of EIG in terms useful for
our further discussion. Lemma 2 implies the Validity condition, while Lemma 3
implies Agreement.

Lemma?2. Assume that etther

— o = A and the initial value of every correct processor is v, or
— 0 = Ti, ini’s tree Val(T) = v and i evecules Send(r) correctly.

Then Dec(o,v) is common.

The proof follows directly from the definition by induction on |o|; the base
case is |o| = ¢ and the induction parameter is decreasing.

Lemma3. The root of the EIG tree, A, is common.

Proof. (Sketch} By an induction similar to the one in the previous lemma, we
prove that if a common node exists on every path from o to a leaf, then ¢ is
common. Note that every leaf has an ancestor of the form o, where ¢ is correct
and, as a consequence of Lemma 2, node o is common. a

2.2 Safe Rules for Early Stopping

In the protocols presented later in this section the values of predicates are actu-
ally computed differently and not always consistently with EIG. The following
definition and lemmas provide justification for such deviations. Ideally, every
processor would reach the same decision as in FIG for every node. However, we
will show that it suffices 1o reach safe decisions for a well-defined class of nodes.

Definition4, A predicate 7 is safe if either

— 7 I8 common, or

— 1 refers to a node ¢ ¢ T"(P —T)*, or

— 7 is of the form Dee(oj,v) and the predicates P Dec(e,v) and PDec(oj,v)
are both common.

Note that the agreement value is 1 iff Dec(A,1) is safe (i.e., iff Dec(A, 1) is
common}).

We now present a set of Farly Stopping Rules that enable a processor to
determine when “partial-decision” and “decision” predicates are safe. These rules
can be used in a number of ways:

- In EIG, the rules are only used to determine what to decide, i.e., which
*decision” predicate is safe for the root.

226

— In Early-Stopping EIG (the protocol of Theorem 8) rules 1-7 are additionally
used to prevent the building of the entire tree, so that a process can stop
early. That is, when “decision” predicates for a node are safe there is no need
to continue determining the nodes descendants.

— Qur contribution is to use knowledge about “decision” and “partial-decision”
predicates in order to reason about what the descendants of a node should
be without actually having to recelve messages relating to them. We call this
technique safe message reconstruction, and describe it in subsection 2.3. We
call the resulting protocol Safe EIG.

The first set of rules is applied by each processor in order to calculate when
“partial-decision” predicates are safe.

1. If in the tree of a correct processor ¢ is created in round ¢ and Val(c) = v,
then PDee(o,v) and =P Dee(o,T) are safe.

2. If in the tree of a correct processor #{r € EXT(o) : Val(r) =v} > p+
t — ||, then PDec(o,v) is safe,

3. If in the tree of a correct processor #{r € EXT(0) : Val(r) =v} > p+2-

(t — |o|), then PDee{o,v) and =P Dec(o,T) are safe.

If #{r € EXT(c) : Dec(r,v) is safe } > p, then P Dec(a,v) is safe.

5 If #£{r € EXT(0) : PDec(r,%) is safe } > p+ it — |o|, then - P Dee(e,v) is
safe.

-

The next set of rules allows a processor to calculate when “decision” predicates
are safe, given safe “partial-decision” predicates.

6. If PDec(o, v} and —PDec{v,7) are safe, then Dee({e,v) is safe.

7. If PDec(o,v) and PDec(o,v) are safe, then ~Dec{o, v) and —Dec(c,7) are
safe.

8. If PDec(o,v) and PDec(cj,v) are safe, then Dec(cj, v) is safe.

When a “decision” predicate is determined to be true for a node o of processor
i's tree, we say that ¢ decides on o. We say that ¢ decides promptly on & whenever
it is able to decide through the application of rules (3) and (6).

The proof that the rules are sound is omitted from the abstract but follows
from an easy induction and the following case analysis: If o ¢ T*(P — T)* the
claim is vacuous—any predicate is safe; if ¢ € T*(P — T)* then we can apply
Lemma 2; lastly, if ¢ € T*, then at most ¢ - |¢| elements of EXT(c) store values
received from faulty processors.

The following example illustrates how rules and decisions work.

Frample 1. We illustrate how “prompt decisions” are reached; processors reach
“decisions” in a similar manner. Assume ¢t = 2 (hence p = 3) and n = 7. Figure 1
shows processor 2’s tree after the second round (recall that since r = ¢ + 1, the
depth of the final EIG tree in this case equals 3). In the example, processor
4¢& P-—~T and 6,7 € T. Given that 5 of the children of node 4 store the same
value (0), and p+2 - (t — |o|) = 5, for o] = |4} = 1, rule 3 “fires.” This in turn

A4

227

makes rule 6 to fire, allowing processor 2 to decide promptly that 0 is a safe value
for node 4. We remark that, despite processor 2 already having decided on node
4, traditional thinking still requires the processor to continue to report values
(in this case, regarding node 4’s children), since those values might be needed
by other correct processors in order to reach their own decisions. In subsection
2.3 we show how this can be avoided.

r=1

41 42 43 45 46 47

Fig.1. How early stopping rules and decisions work.

When discussing ‘the conclusions that may be derived from the above Early
Stopping Rules, we use notation from the theory of knowledge in distributed sys-
tems [HM]. We read K[¢ as “after receiving round r’s messages processor i knows,
fact ¢.” We will also use the “everybody knows” operator E"¢ = /\:e p-r K ¢
We will drop i and r when obvious from the context. It is assured that the
Early Stopping Rules are applied by all the correct processors, and that all their
knowledge is the one that may be derived by applying these rules. We also as-
sume that processors do not forget, i.e. K¢ implies K| +14. A statement of the
form =K ¢ means that i cannot deduce ¢ by round r by applying the rules.

We begin by stating some properties about the level of knowledge concern-
ing safe predicates. The next two lemmas, whose proofs are omitted from the

Ve

228

abstract, are analagous to Lemmas 2 and 3 and show that the: Early Stopping
Rules are sufficient .to-infer the consensus value. .

Lemma5. Assume that processor i in-round r ezxecutes Send(o) correctly, and
in its tree Val(a) = v. Then E™+2[Dec(ai,v) is safe].

Lemma®6. Assume that after round r processor i has deczded on an ancestor of
every leaf node. Then i can also decide on).

Let f denote the number of processors that actually fail and let the initial
round of the protocol be numbered 0. Now we can show that by round f+ 1 all
correct processors decide on A. This happens because every leaf has an ancestor
in T*(P — T). If a node of this form is created before round f, then all correct
processors decide on'it before round f + 2; if it is created at round f, then
all of its children are created by correct. processors and consequently all correct
processors decide on it promptly in round f + L.

Lemma?7. Leti € P-T and o € T*(P T)*. Then K"[Dec(a v) is safe]
implies E"+2[Dec(o,v) is safe]. Moreover, if i decides promptly on o in round
7, then E™*'[Dec(a,v) is safe]. ;

The above lemma shows that processors not only can decide early, but that
they may stop sending messages early. This justifies Early-Stopping EIG, a mod-
ified EIG protocol that enables early stopping by omitting the sending of mes-
sages as follows: a processor does not execute: Send(oT), for any 7, if it has
decided on ¢ before the previous round, or if it has decided promptly on ¢ in the
previous round. “Decided” here means accordlng to Early Stopping Rules (1-7).
This allows us to prove the following theorem, originally due to Waarts [W]:

Theorem 8. Early-Stopping EIG solves the Distributed Consensus problem us-
ing n > 3t processors and min(t + 1, f + 3) communication rounds. .

2.3 Optimal Early Stoppmg

Using a different formalism and only Early Stopping Rules (1 7), we have thus
far described and proved correct a version of EIG that stops in min(t+1, f+ 3).
Now the task is to show:that starting from round f + 2 the correct’processors
may stop sending messages, so that only rounds 0 to f + 1 are needed. Achieving
this with the optlmal number of processors settles a long-sta,ndmg open question
[DRS] ;
As shown above; processors .decide on A by round- f + 1:at the latest; how-
ever this is not yet a sufficient reason to stop sending messages. Existing early-
stopping protocols operate on the principle that if'a correct processor knows -
that no other correct processor will read its message, it does not send it. In
other words, a processor does not send any messages if it knows that all correct
processors know the consensus value. However, it can be shown that when ni< 4t
this level of knowledge cannot be assured by round. f+1 o

220

One can offer a different principle: a processor need not send a message if
other processors can infer it from its silence. For example, if processor ¢ does
not send anything in round 1, it means that ¢ decided on A promptly; this may
happen only if all messages i received in round 0 were the same. In general,
such a complete reconstruction is not possible if the silence always immediately
follows the round in which i decided on A. However, we will show that while an
accurate reconstruction is not possible, a safe reconstruction is.

Given some rules for message reconstruction, silence is equivalent to sending
a message which is an alteration of a message in the EIG protocol. Such an
alteration may affect some nodes in the sense that some correct processors may
infer different predicates concerning these nodes. We say that an alteration of a
message is safe if A is not affected. When a processor i decides not to send some
values and another processor j computes the safe alterations of these values, we
say that j safely reconstructs these values.

We will use a very simple principle for not sending messages: processor %
does not execute Send(or) iff it already decided on . Other processors can
proceed in three stages: reconstructing o, reconstructing i’s decision on ¢, and
veconstructing i’s messages on the descendants of o.

The reconstruction of ¢ is easy: first, all descendants of ¢ are omitted from
the message; second, either ¢ = A, or s has a sibling with a descendant for which
i did execute a Send (this is true because when a processor decides on all the
children of a node, then it also decides on the node itself).

The reconstruction of decisions uses the following definitions. Let us fix one
correct processor, say j, and let U be the set of nodes for which processor i
executed Send before round r.

Definition9. For every 7€ U
CDec(i,T,v) = — ';“'1[—|K{'“1[Dec(1', v) is safe]];
CPDecli,r,v) = —Kj '[~K[~'[PDec(r,v) is safe]].

In other words, C Dec(i, 7, v) (resp., C P Dec(i, 7, v)) means that the assertion
“Dee(r, v) (resp., PDec(r,v)) may be inferred by ¢ before round r” is consistent
with the messages received by j before round r.

Lemmal0. CDec(i,r,v) implies ~CPDec(i,r,7) for every € U, v =0, 1.

The proof of this lemma follows by induction on the depth of the subtree
of U rooted by 7. The basis is proved by the analysis of prompt decisions, the
inductive case by the analysis of the remaining safe rules. Rule (8) is needed in
one of the cases.

The general principle for reconstructing a message is also simple: the recon-
structed values will “maximally help” to reach the same decision on o as i did.
If is faulty, then the reconstruction does not matter since a fanlty processor is
allowed to send anything. If i is correct, then the affected nodes must be proper
descendants of &, which makes the reconstruction safe. The implementation of
this principle is described in the following lemma.

230

Lemma 11. Processor j can safely reconstruct the values of Send’s that i did
not execule in round r.

Proof. (Sketch} First, j finds those o’s which had to be decided on by . Then
for each such o, processor j finds which of the following three cases holds;
C'Dec(i, 0,0), CDec(i,0,1) or CPDec(i,,0) A C'PDec(i,0,1); by Lemma 10
these cases are mutually exclusive. The safe reconstruction is as follows: in the
first case, messages on all descendants of ¢ are reconstructed to 0; the second
case is analogous. In the third case we can show that a reconstruction is safe
if it gives v to a node of the form ¢k whenever CDec(i,ok,v) is true. The
reconstruction of the messages for the descendants of any ¢ not covered by this
rule is irrelevant, a

The following example illustrates the technique.

Ezample 2. Assume the same scenario as in Example 1 (1 = 2, p= 3, n = 7.
Figure 2(a) shows processor 2’s tree after the third (and last) round, during

which no messages from processor 5 are received regarding node 4’s children.

We note again that we can assume that processor 5 is non-faulty. Processor 2 is

able to establish C'Dec(5,4, 0) by reasoning as follows. There are two cases:

1. 4 € P —T. Since the number of “reported” 0’s for node 4 is four, processor
5 must have decided promptly on 0, since it is not possible for processor 5’s
tree to have five 1’s reported for 4.

2. 4 €T Since t < 2, there remains at most one other faulty processor, which
means there can be at most one different value in the children of node 4 in
processor §’s tree. This in turn implies that 5 must have received at least
five 0’s to be able to decide promptly.

Processor 2 then proceeds (Lemma 11) to reconstruct missing messages from
processor § on all descendants of node 4 to 0 (see Figure 2(b)). We note that in
the process some values of nodes might be affected (e.g., nodes 465 and 475 in

Figure 2(b)), but this deviation won’t propagate above the node under con-
sideration (node 4 in the example).

For space considerations, the previous exarnple illustrated the simplest case
of message reconstruction originating from a prompt decision (processor 5’s). We
remark that the other cases—non prompt decision, “neutral” decision—are more
involved, but the case analyses in the reconstruction of messages and decisions
are similar and mostly reduce. We leave the details for the full version of the
paper.

This justifies the protocol we call Safe EIG, similar to EIG except for the
following:

— A processor executes Send(o7), for any r, iff it has not decided on ¢ (“de-
cided” here means derivable from Early Stopping Rules (1-8)), and

— missing messages that are needed are reconstructed according to the safe
reconstruction technique of Lemma 11,

231

Processor 2°s tree

H H -
4] 42 43
H H i
: H H
H H H
H i H
: i H
H H H
: H H
H H }
H H H
H H :

: i, i,
e - N
.-' * i by _-' *
: y 0) H
. } ; H
*, ‘ ., * . r
Taast Yennst rper”

Processor 2's tree

(a)

H H
445 1 46 ! 47

: i

H i

: H

H i

: i

: i

H H

: i

H H

: i

3 :

e P
‘

L . l' .l
{ Y 4 \
. Il . H
' Y H

S S

O .y

(b}

Fig. 2. Safe message reconstruction.

232

Theorem 12. Safe EIG solves the Distributed Consensus problem using n > 3¢
processors and min(t + 1, f + 2) communication rounds.

While the consensus protocol of Theorem 12 is processor- and round-optimal,
it is not efficient—its maximum message size is O(t!). In the next section we
present protocols that are early-stopping and use messages of constant size.

3 Early Stopping with Constant Message Size

The protocols of this section are based on the Phase Queen and Phase King pro-
tacols of [BG1, BGP]. We first show how to transform them into early-stopping
protocols—without jeopardizing their simplicity, and then demonstrate several
techniques to further reduce the round and bit (and message) complexity while
maintaining the early-stopping property.

The first early-stopping consensus protocol—Early-Stopping Phase Queen
(ESPQ for short)—requires n > 4¢ and is shown in Figure 3. It executes at
most ¢ + 1 phases each consisting of two communication rounds: the universal
exchange and the broadcast of the “phase queen”; each phase has a distinct
queen. (In this section the semantics of Send(U/) is to send (the contents of) U to
all processors—including the sending processor.) We assume that each processor
p has local variables V' (the subject of the consensus problem), P (indicating
whether or not there is a “strong preference” for V) and § (which counts the
number of processors with strong preferences), and integer array C[0..1] (the
counts of 0’s and 1’s received). In the universal exchange each processor changes
V to what it percelves as the majority value and sets P to true if V is strongly
favored. During the queen’s broadcast each processor sends the value determined
to be the majority along with an indication of the strength of its preference for
this value. After counting the number of processors with strong preferences, a
processor replaces its own V' with the queen’s value if there are too few processors
with a strong preference; should it find many processors with a strong preference,
it halts. Because some correct processors may halt before others, a convention
is adopted to account for messages that are not received during a phase: if no
message i8 received from p during the universal exchange, the receiving processor
assumes that the missing value is equal to the value of its own V of the previous
phase and that the silent processor indicates a strong preference during the
queen’s broadcast.

For ease of presentation the gueen’s broadcast uses two-bit messages. The
remark below shows how to reduce this broadcast to cne bit and thus make
ESPQ@ a single-bit protocol.

Theorem 13. Early-Stopping Phase Queen solves the Distributed Consensus
problem using min(2(f + 2),2(t + 1)) exchange rounds and one-bit messages,
where f is the number of processors that fail during ils execulion, provided n >
4t.

Proof. As a preliminary step, we show the following property of protocol ESPQ
(Fig. 3).

233

for k:=1to ¢+ 1 do begin
(* universal exchange *)
send(V');
for j:=0to 1l do
. C14] := the number of received j’s;
V= C[1] > 2t;
P:=CV]zn-1t
(* queen’s broadcast *)
send((V; PY);
8 := the number of received (v, 1)’s, for any v;
if § <t then
V := v, where {v, w} is the message
received from &
elseif S > 2t then
halt;
end;

Fig. 3. Protocol Early-Stopping Phase Queen, code for processor p.

Persistence: If for all p € P~ T, V, = v is true at the start of a phase, every
processor decides on v and halts at the end of the phase.

To see this, observe that the universal exchange results in every correct pro-
cessor p having C[v], > n —t > 2t, Cfd], < t, and P being true. Therefore
it computes V, = v with a strong preference. During the queen’s broadcast, it
detects that at least » — ¢t processors have strong preferences so it ignores the
queen’s broadcast and halts.

Now we can address the correctness of the protocol.

Agreement: Since the number of phases (¢ + 1) exceeds the number of faulty
processors (t), there is some first phase g with a correct queen. One of the
following cases holds at the end of phase g

1. S < t for each p € P — T. Then every correct processor assigns Vy to V
during the queen’s broadcast of phase ¢, where {V,w) is the message sent
by g. -

9. § >t forsome p &€ P—T. Then P is true for at least one correct processor p’
so at the end of the universal exchange, V;» = v and C[v]» > n —t. Among
the n — ¢ processors from which p’ received value v, at most ¢ are faulty so
at least n — 2t are correct. Thus, every correct processor received v at least
n — 2 > 2t times, and ¥ at most 2¢ times. As a consequence, at the end
of the universal exchange V; = v for every ¢ € P — T, including queen g;
therefore the queen’s broadcast must result in V; =vforallge P~ T.

Persistence assures that no correct processor changes its value subsequent to
phase g.
Validity: Follows trivially from Persistence.

234

As for the running time, Agreement shows that, if the queen of phase k is correct,
then for all p € P — T, V, = v for some v. By Persistence, all processors that
have not already halted will halt by the end of phase k + 1. If & is the phase
with the first correct queen, the number of faulty processors f is at least k — 1
(because all prior queens were faulty). Thus &+ 1 < f + 2. O

Remark: If a correct processor p agserts that it has a strong preference during
the queen’s broadcast of a phase, then Clv]lp > n —t at the end of the phase’s
universal exchange, for some v. Since at most t of the processors in this count
are faulty, Clv], > 2t for for all g € P — T s0 Vy = v. Therefore, a correct
processor with a strong preference need not send the value that it prefers during
the queen’s broadcast; it may be deduced by the receiving process as being equal
to its own V. We can change the code so that a queen sends its own V' during
the queen’s broadcast if and only if it does not have a strong preference for V',
and let all other processors interpret a missing message from the queen in this
light. Therefore, ESPQ may use single-bit messages.

ESPQ is asymptotically optimal with respect to rounds and number of pro-
cessors but is exactly optimal in message size. The second protocol— Early-
Stopping Phase King (ESPK)—sacrifices exact optimality in message size (it
uses two-bit messages) in order to achieve exact optimality in the number of
processors, i.e., n > 3. The protocol is shown in Figure 4.

for k:=1tot+1 do begin
(* universal exchange 1 *)
send(V);
for j :=0to1do
C[s} := the number of received j’s;
(* universal exchange 2 *¥)
for j:=0to 1 do
send(C[f] > n — 1)
D[3] := the number of received 1’s;
V= D[1] > ¢
P:=DlV]Z2n-t
(* king’s broadcast *)
send{{V, P)};
8§ = the number of received (v, 1)’s, for any v;
if § <t then
V = v, where {v, w} is the message
received from %
elseif S > 2t then
halt;
end;

Fig. 4. Protocol Early Stopping Phase King, code for processor p.

235

ESPK is like ESPQ with an additional universal exchange. The additional
exchange can be either one round using two-bit messages, or two rounds using
single-bit messages. After this exchange, we can show that there is at most one
v for which D[v], >t for any processor p. Therefore, a processor can compute a
new value for V' using fewer processors (¢ versus 2¢) than in ESPQ.

Theorem 14. Early-Stopping Phase King solves the Distributed Consensus prob-
lem using min(3(f + 2),3(f + 1)) exchange rounds and two-bit messages, or
min{4(f +2), 4(t +1)) exchange rounds using single-bit messages, where [is the
number of processors that fail during is execution, provided n > 3¢,

"The proof is very similar to that of ESPQ (Theorem 13) and is omitted from the
abstract.

3.1 Reducing the Number of Rounds

While the two early-stopping consensus protocols presented above have optimal
message size, their round complexity is at least twice optimal. Using the com-
mittee technique of [BG1], we show in the full paper that the number of rounds
may be reduced to min(f(1 + 1/d) + 5,¢(1 + 1/d)) for every constant d while
maintaining the same number of processors and constant message size.

Briefly, the technique involves replacing the queen (king) processor of each
phase with a commitiee of processors. Intra-committee the processors run any
round-optimal early-stopping distributed consensus protocol. Any processor not
in the committee of a phase merely listens and uses as the queen’s (king’s)
message any value decided on by at least ¢ processors in the committee. By par-
titioning the processors into R disjoint committees, the protocol can be run for
at most R phases (versus ¢ + 1). Because of the intra-committee early-stopping,
some processors may advance to the next phase before others; the full paper
shows that this loss of total synchrony can be overcome without penalty in the
round complexity.

If the intra-committee protocol of phase m can tolerate t,, — 1 faulty pro-
cessors, then a bad commiitee (one in which more than ¢,, — 1 processors are
faulty) runs for at most ¢, rounds whereas a good comitiee (one with f,, < t,,
faulty processors) runs for mén(fm + 2,1, + 1) rounds. Thus, the total number

of rounds in a run in which the first good committee doesn’t occur until phase
F is:

F—1
144, + 1+ + 2 + 2 2 f(l+1/d)45
z (fr +2) 2 A+

phase with first good committee final phase
phases with bad committees

where f =571 4 fo.

236

4 Early Stopping with Optimal Bit and Message
Complexity

In the full paper we show that the commitiee technique of the previous sec-
tion may be applied in the extreme (as indicated in [BGP}) to obtain an early-
stopping protocol with exact processor optimality, near round optimality, and
asymptotically optimal bit (and message) complexity (O(nt)). The technique
splits the processors into two committees, each acting the role of king in one
of two phases of the Early-Stopping Phase King protocol. Intra-committee, the
processors reach consensus by recursively applying the technique until the com-
mittee size becomes too small, in which case they use the ESDM protocol of
[BG2]. We note that a straightforward application of the technique of [BGP]
does not suffice: extra measures must be taken to prevent even a single faulty
processor from delaying termination for a number of rounds equal to the depth
of the recursion. Note that our protocol achieves message optimality in el runs
(at the expense of a reasonably small constant), unlike the protocol of Hadzilacos

and Halpern [HH] which only achieves exact message optlma.llty for failure-free
runs.

Acknowledgements

‘The authors would like to thank Gil Neiger for his help in tracking down the
message size of existing early-stopping consensus protocols, and Yoram Moses for
commenting on an early draft of the manuseript and improving the presentation.

References

[BDDS] A. Bar-Noy, D. Dolev, C. Dwork and H.R. Strong, “Shifting gears: changing
algorithms on the fly to expedite Byzantine Agreement,” Proc. 6th PODC, pp.
42-51, August 1987,

{BG1] P. Berman and J.A. Garay, “Asymptotically Optimal Distributed Consensus,”
Proc. ICALP 39, LNCS Vol. 372, pp. 80-94, July 1989,

(BG2] P. Berman and J.A. Garay, “Distributed Consensus with n = (3 + €)¢ Proces-
sors,” Proc. 5th International Workshop on Dist. Algorithms, LNCS, Springer-
Verlag, October 1991,

[BGP] P. Berman, J.A. Garay and K.J. Perry, “Towards Optimal Distributed Con-
sensus,” Proc. 80th FOCS, pp. 410-415, October/November 1989,

[C] B. Coan, “Dfficient agreement using fault diagnosis,” Proe. 26th Allerton
Conf. on Comm., Control and Computing, pp. 663-672, 1988.

[DR] D. Dolev and R. Reischuk, “Bounds of Information Exchange for Byzantine
Agreement,” JACM, Vol. 32, No. 1, pp. 191-204, 1985,

[DRS] D. Dolev, R. Reischuk and H.R. Strong, “Eventual is Earlier than Immediate,”
in Proc. 29rd STOC, 1982, Revised version appears in “BEarly Stopping in
Byzantine Agreement,” JACM, Vol. 37, No. 4 (1990), pp. 720-741.

[DS] D. Dolev and H.R. Strong, “Authenticated Algorithms for Byzantine Agree-
ment,” in SIAM Journal of Computing, Vol. 12, pp. 656-666, 1983.

[FM]
(HH]
(HM]
[LF]

[L.SP]

[(MW]

[PT]

[TPS]

(W]

237

P. Feldman and S. Micali, “Optimal Algorithms for Byzantine Agreement”,
Proc. 20th STOC, pp. 148-161, May 1988,

V. Hadzilacos and J. Halpern, “Message-Optimal Protocols for Byzantine
Agreement,” Proc. 10th PODC, pp. 309-324, August 1991,

J. Halpern and Y. Moses, “Knowledge and commeon knowledge in a distributed
envirenment,” JACM, Vol. 37, No. 3 (1990), pp. 549-587.

L. Lamport and M. Fischer, Byzantine Generals and Transaction Commit
Protocols, Opus 62, SRI International, April 1982,

L. Lamport, R.E. Shostak and M. Pease, “I'he Byzantine Generals Problem,”
ACM ToPLaS, Vol. 4, No. 3, pp. 382-401, July 1982.

Y. Moses and O. Waarts, “Coordinated Traversal: (¢4+1)-Round Byzantine
Agreement in Polynomial Time,” Proc. 29th FOCS, pp. 246-255, October
1988,

K.J. Perry and 8. Toueg, “Distributed agreement in the presence of processor
and communication faults,” IEEE Trans. on Software Engineering, Vol. 12,
No. 3, pp. 477-482, March 1936,

S. Toueg, K.J. Perry and T K. Srikanth, “Fast Distributed Agreement,” SIAM
Journal of Computing, Vol. 16, No. 3, pp. 445-457, June 1987.

O. Waarts, “Coordinated Traversal: Byzantine Agreement in polynomial
time,” M.Sc. Thesis, Weizmann Institute of Science, Rehovot, Israel, August
1988,

Traffic-Light Scheduling on the Grid

(Extended Abstract)

Guy Kortsarz * David Peleg*
g

Abstract

This paper studies the problem of route scheduling under the telephone model
of communication networks. Previous work in this model considered mostly the
“broadcast” and “gossip” communication primitives. The approach studied here
is that of devising simple, distributed universal schedules, that are efficient for
wide families of routing instances, rather than attempting to solve individual
instances separately. The paper concentrates on “traffic-light” type schedules
for route scheduling on the two-dimensional grid.

In order to study the problem of scheduling given route instances, routes
are classified according to the number of directions they use, and tight bounds
are given on the time required for scheduling route instances in each class. For
routes of length d or less, using only one direction, scheduling is shown to require
d+ O(1) time. For simple routes using only two or three directions, scheduling
is shown to require 2d + 3 and 2d + 4 time, respectively. Finally, for arbitrary
simple routes scheduling is shown to require 2d + ©(v/d) time.

1 Introduction

The study of useful communication primitives and their efficient implementation is
at the heart of current research in the area of communication networks. This paper
concerns the common telephone communication model (cf. [HHL88]). In this model,
messages are exchanged during calls placed over edges of the network. A round is
composed of a collection of calls catried out simultaneously. Each round is assumed to
require one unit of time, so ronnd £ begins at time t — 1 and ends at time £, A vertex
tay participate in at most one call during a given round, however there is no bound
on the amount of information that can be exchanged during a given call,

Much of the previous work on communication in the telephone model has concen-
trated on the two important primitives of broadcasting and gossiping. A broadcasting
problem refers to the process of message dissemination whereby a distinguished vertex
originates a message that has to he made known to all other processors, A gossiping
problem refers to the process of performing many broadcasts in parallel, with each

*Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot
76100, Israel.

PSapported in part by a Walter and Elise Haas Career Development. Award and by a grant from
the Israeli Basic Research Foundation.

239

vertex in the network originating on& message. These problems have received consid-
erable attention in the literature; for a comprehensive survey see [HHL88]. In this
paper we study the somewhat more generalized routing problem, in which each node
is allowed to send messages to arbitrary sets of destinations. Morve specifically, routing
refers to the process where a number of sender-receiver pairs of vertices are given, and
each sender originates a message to be sent to the receiver,

One may distinguish between two versions of the problem. In the more general ver-
sion, referred to as the telephone routing problem (or TR), the algorithm is required to
determine both the routes along which the messages are to be sent, and the activation
schedules of the edges, so as to minimize the overall execution time. This problem is
studied, for instance, in [LR91, Kor90] on the grid network.

In this paper we concentrate on a more limited version of the problem, named the
telephone route scheduling problem (or TRS). In this version, the routes are given as
part of the input, and it remains only to determine the activation schedules of the
edges. We assume that all messages are distinet, but a vertex is allowed to participate
in a given instance as a receiver or as a server more than once. For example, a vertex
v may send several (different) messages to the same vertex w, We again stress the fact
that at each round, any vertex v may exchange information with ouly one other vertex
w, however in such a round it is allowed to deliver a large amount of information
(corresponding to different messages of different input routes, that bave reached v
earlier) along the corresponding edge (v, w).

Another distinction of our approach councerns the nature of the solutions sought for
the problem. Given any particular collection of routing requests, it is possible to look
for a set of routes and a schedule that are optimal (or. near optimal) for that particular
instance. This corresponds to the kind of questions studied in several papers dealing
with the broadcast and gossip problems. However, this approach typically leads to
hard problems. In particular it is shown in [Kor90} that optimizing TR and TRS
is NP-hard for general graphs. Restricted graph classes have been given complex
centralized solutions [FP80, SCH8I). We therefore concentrate on the alternative
approach (considered also in [LRI1]) of designing simple, distributed schedules that
are universal for wide families of ronting requests, This naturally leads to the idea of
“traffic-light” type schediles, based on periodic activation of edges.

Distributed traffic-light solutions are, in particular, suitable for what we call con-
tinuous routing problems, In the TRS problem, there is a distinguished starting point
in time, upon which the input is presented to the processors and all the vertices start
sending their messages. In contrast, a continuous TRS problem (denoted CTRS) is a
version of the problem in which there is no such starting point. Rather, the system
operates continuously, and at any given moment, any vertex may initiate a message to
any other vertex on some specific path. The solution to such a problem is an algorithm
that minimizes the time duration since a message is introduced into the system, until
it is delivered at its destination. The solutions given in this paper for the TRS problem
are especially oriented for continuous problems.

Let us now briefly describe the results presented in this paper. We focus our
attention on the problem of scheduling given route instances on the grid. It turns
out that in order to analyze the resnlting complexities, it is convenient to classify the
routes according to the number of directions they use. Using this classification, it is

240

possible to establish tight bounds on the time required for scheduling route instances
in each class.

In Section 3 we deal with the case where the mput routes are one-directional. We
give a (surprisingly nontrivial} single schedule 5; that completes the routing on any
such problem instance A, in no more than d(A) + O(1) titne units, where d(A) is the
maximal length of an input route in the input. The arrival thnes of the messages
under schedule S, are distance dependent. (By distance-dependent we mean that
each input message in A that is to be sent from v to w, reaches w in time no larger
than the distance from v to w, plus O(1).} An application of this schedule to the
classical broadcasting and gossiping problems, discussed in [Kor90], establishes that it
is possible to achieve broadcast and gossip on the grid with distance-dependent, O(1)
deviation from the optimum time, using shortest paths between every sender-receiver
pair.

In Section 4 we introdice the traflic-light schedule S and use it to deal with the
problem of scheduling 2— and 3— directional routes on the grid. We show that when
the input routes each use only 2 (resp. 3) directions, the scheduling requires 2. d(A4)+3
(resp. 2-d{A) +4) time units, by giving matching upper and lower bounds.

Finally, in Section 5 we deal with the TRS problem on the grid where the input
routes are arbitrary (4-—- directional) simple paths. In Subsection 5.1 we analyze the
performance of the S5 traffic-light schedule on such 1011!:95 We show that S5 completes
the routing in any sich problem A in no more than 2-d(A)+2v2-/d(A)+2 time units.
This bound is complemented in Subsection 5.2, whele we constrict a problem A for
which the time needed to complete the routing is at least 2. d(A) +2-/d(A) + 1 -1,
For lack of space, most proofs are defered to the full paper [KP92).

2 Preliminaries

2.1 The model

The communication network is modeled by a connected graph G = (V, E) consisting
of a set V of n vertices, ¥V = {u, .., v, } representihg the processors, and a set £ of m
adges, £ = {e|, ..., &,] representing the communication lines between the processors.

[n this paper we forus on the (rectangular) m x n grid graph Gr,,. = (V, E).
We think of the grid as embedded in the plate so that vertex (1,n) is at the top,
rightmost corner. Given a route (i.e., an oriented path) p = (e1,€z,...,¢€),)) on the
grid, we associate with each move e in p a direction, dir(e) € {“I",%r “,“u”, “d"},
in the obvious way. We may also refer to a move ¢ = (¢, + 1) — (i,7) on the
route (i.e., such that dir(e) = “I") as an “{” move, and say that the route is moving
in the left direction, and similarly for the other directions. We denote a path p by
P =(e1,€2,...,¢,)) where ¢; are the path edges. The prefix containing the first : edges
of the route is denoted by p(7) = (€1,..., &), for all 1 <7 < |p|. An edge e on the route
is regarded as a directed edge, i.e., an edge with the orientation imposed by the route.
We shall refer to the edge e; as the ’th mowve on the route.

Given a graph G = (V, E), two edges ey, ey € E are called adjacent if they share a
vertex. A subset of edges £ C F is independent iff its edges are pairwise nonadjacent.

At a given round, if a call is placed over an edge ¢ we say that the edge e is active

241

in this round, else we say that the edge is idle. Note that by the definition of the
telephone model, at each round ¢, the set of active edges must be independent. A
schedule on a graph (7 = (V, £) is an infinite sequence {(£:)iz1 such that for each ¢,
E; C F and E; is independent. Iutuitively, a schedule determines the set E; of active
edges on the i’th round. A schedule induces for every edge e a (possibly infinite)
tuple A(e) = (21,t2,...), consisting of the rounds in which the edge e is active in the
schedule. Thus the collection {A(e) | ¢ € E} completely characterizes the schedule.

In order to simplify the process of desighing and analyzing our schedules, it is
some times convenient to view every edge e as two directed edges € and € in opposite
directions, and treat these edges separately. In particular, € and € may be given
separate sets A(e) and A(F) of active rounds (these sets may of course intersect).
Note that such a directed schedule must still obey the rules of the model. It can be
thought of as obtained by starting with a regular bidirectional schedule (in which,
whenever an edge e is active, it can be used in ‘both directions), and restricting it by
forbidding the use of some edges ¢ in one of the directions at some of their active rounds.
While such restrictions yield no actnal gains for us (and in fact, can only degrade the
performance of the vesulting algorithm), they serve to simplify the analysis in some
cases, When dealing with a directed schedule, we denote the directed graph obtained
from G by splitting the edges as described by (.

2.2 The TRS problem

Posed formally, a TRS problem is defined as follows. The input consists of a set of &
routes, {p1,...,pe}. For every p;, its start vertex v; originates a message M;, to be
sent to its end vertex w;. Each v, is called a sender and each w; is called a receiver.
Any vertex v may appear more than once as a server and as a receiver. The goal is for
each message M, to be sent to w; along p;, where the communication pattern obeys the
requirements of the telephone model. A solution for an instance of the TRS problem
consists of a schedule, that is, the solution must determine the (independent) set of
edges F, to be active at round ¢, lor every ¢ > 1. Such a schedule completely specifies
the progress of messages for the TRS instance, that is, for every path, the vertex
currently holding the message forwards it to the next vertex in the path, in the next
time that the corresponding edge is active. Given an instance A of the TRS problem,
we denote d{A) = max;{|p:|}. Denote the time needed to complete the routing in A
by T(A). Given a nonnegative integer d, denote the family of TRS problems instances
A such that d(A) < d by TRS,. We measure the efficiency of an algorithm P for the
set TRSy by the number of time units, T(P, d), required to complete the routing in
the worst case, using the algorithm. We denote by TRS(:-DIR), 1 € {1,2,3,4}, the
TRS problem on the grid G, , where the input routes are i-directional (that is, the
routes use only ¢ of the four possible forwarding directions on the grid.)

2.3 Traffic-light Schedules

In order to cope with the TRS problem, a possible approach is to ignore the particular
inputs, and try to give a single wniversal schedule that deals simultaneously with a
large set of problem instances. This motivates the following definitions.

242

A traffic-light schedule for a family & of TRS iustances on a fired graph G is a fized
schedule (i.e., a schedule that does not depend on the particular instance) such that
for every edge e, if A(e) # @ then it is periodical.

A fixed schedule for a family 5 of TRS instances said to be a directed traffic-light
schedule if it is a traffic-light schedule defined on (7 the directed version of G, that is
both .A(€) and A(€) are either empty or periodical.

3 Scheduling 1-directional paths on the grid

In this section we study scheduling of one-directional routes. Every vertex is allowed
to send a message ouly to vertices in the same row or columnn, along this row {(column),
The “Manhattan-type” schedule nsed in [LR91, Kor90] can, in principle, be used here.
However, in every row or columu, this schedule allows delay-free message propagation
only in one direction (by providing a “green-waye” in that direction}. Thus if an input
route requires the message to be sent in the direction opposite to the “green-wave”,
it leads to a 3d + O(1) scheduling time since the message is delayed for two rounds
between any two consecutive steps. In this section we present a solution for this
problem that achieves d + (O(1) scheduling time, which is optimal up to an additive
constant, Intuitively, we achieve this by making sure that each row and column in the
grid provides a “green wave” in both directions simultaneonsly. This seemingly simple
requirement turns out to he surprisingly nontrivial to obtain.

The input of an instance in TRS{1-DIK) contains four kinds of sender-receiver
routes: (%,) sends a message to (7, k) along the ’th row using only “I* moves if j > &,
and only “r” moves if & > j. Likewise, (i,7) sends a message to (&, j) along the
j'th column using only “d” moves if & > ¢ and only “u” moves if £ > k. Since the
schedule is directed we look at each edge e = ((4,5),{1,7 + 1)) as two directed edges
er={(1,j + 1} (¢,7)) and e, = {(¢,7), (¢, 7 + 1)} in the two directions, and similarly for
a vertical edge.

Definition 3.1 A directed traffic-light schednle for the m x n grid Gry, . is directed
rightward-wave on the 'th row,.if for-every edge e on row i, A(€) # @ and moreover,
for each round t > L and | € j € n—1, if the edge {(,7 ~ 1), (¢,7)} is active on round
t, then the edge ((¢, 7+ & — L}, (4,7 + k) ts activeon round ¢t + &, forall 1 £k < n~j.
The definition for the up, down and left directions is similar.

Definition 3.2 A traffic-light schedule for a given grid G, is called bi-wave if it
is rightward-directed wave and leftward-directed weve on each row, as well as upward-
directed wave and doumward-divected wave on each column.

We now describe a directed bi-wave traffic-light schedule for the grid Gr,,,. Such
a schedule will allow each message to wait only O(1) time units before departing,
and never stop again. This of course leads to distance-dependent Q1) delay of each
message. Intuitively, we want to take advantage of the wave property of the schedule
by making the message join a wave in the appropriate direction and “ride” it all the
way to the destination, progressing by oue row or column at each step. All a message
has to do is to wait for the wave to reach its source and then start marching with it.
The active times for any possible edge is described in the following schedule. For any

243

121110 9 8 7 6 5 4 3 2 | limod24

1 2 2 1112 21 7 8 8 17 3 4 |
150 0 11011 21 6 6 7 17 2 1Inyr

24 23 22 21 20 19 18 17 16 5 14 13[imod 24
4 14 14 23 9 10 1019 5 6 6 154"
212121323 8 8 9 19 4 4 5|

Figure 1: Definition of d4(i) and (lt,fi) for all <.

colummn index ¢ we define two wumbers d,(2) and dqy(¢) depending only upon < mod 24
(see Figure 1). The initial delay of a “vertical” message depends on its row, its column,
and on dy{i} {d.{i}) if the message heads downward (upward).

Algorithm 3.3 Divected bi-wave traffic-light schedule 5,
L. Let e be an horizontal edge e = ((¢,), (¢,7 + 1)).
Afe,) = {1 >0:t=(j — k) mod 12}
Ale)) = {1 >0: &= (¢~ j) mod 8}
where b = { 0; [+ —1)/6] is even; and ¢ = { 2, |(—1)/4] is even;

6; otherwise; 6; otherwise;
2. Let e be a vertical edge e = ((4, 5}, (1 + 1, 7)),
Aleg) = {t > 0:¢t = (du(s) + ¢) mod 24}
Ale) = {t > 0:t = (d(f) + (6 — i) mod 24}

The rather complicated proof that this schedale obeys the rules of the telephone
model is omitted. (It appears in [Kor90].)

We note again that since the schedule is b — wave, if v sends a message to w along
a 1 —directional route, it arrives in dist(v,w) + O(1) time units (where dist(v,w) is
the distance of v and w in the grid); the message may initially be delayed for up to 23
rounds, and is no longer delayed afterward.

Theorem 3.4 For cvery problem instance A € TRS(1-DIR), scheduie S, guarantees
that T(Ay = d(AY+ O(1). 1 ‘

244

The schedule S; has an important application to the problem of broadcasting and
gossiping in the grid. Using this schedule it is possible to perform gossip in such a way
that the message sent from v to w, will be transmitted along a shortest path, and will
arrive after no more than dist(v, w) + 35 time units {Kor90]. This property was not
enjoyed by the previous solutions [FP80, LR91].

Theorem 3.5 [t is possible to perform broadeast end gossip on the grid along shortest
paths, with only O(1) distance-dependent delay, |

4 Scheduling shortest paths and 3-directional paths
on the grid

This section considers the problems TRS(2-DIR) and TRS(3-DIR), namely, route
scheduling on the grid-Gr,, ., in the special case where the input routes are shortest
paths or 3—directional paths. In Section 4.1 we present the “traffic-light” schedule Sa,
achieving an upper bound on the schedule time for this class of instances. In Section
4.2 we study some properties of TRS on trees, which are then used in Section 4.3 to
coustruct a matching lower bound.

4.1 The upper bound
The solution for TRS(2 —~ DIR) and TRS(3 — DIR) is based on a new schedule, Sy,

which we shall call the cyelic schedule. The schedule Sy relies on a partition of the
grid to 3 x 3 blocks. Each edge is active once every four rounds. In Figure 2 we give
the schedule of the first five rows and columns. The number beside each edge denotes
the times when the edge is active (modulo 4). A clockwise {connterclockwise) turn in
a route is, e.g., two consecutive moves of the form “™ and “d" (“1" and “d™).

We refer to a clockwise turn that uses the directions *r” and “d”, as a *rd” turn,
and analogously for the other types. Given a route p on the grid, let w(p) denote
the difference between the number of clockwise turns in p and the number of counter-
clockwise turns.in p. The following fact can be ohserved directly from the definition
of schedule S,

Fact 4.1 Given a route p, the number of time units it takes to traverse p using the
eychic traffic-light schedule Sy is at most 2+ |p| +w(p)+2. |

The analysis of w(p) is based on looking at the sequence of “significant” points
along the run. These points are the ones in which w(p) increases by one, and never
falls below the current value afterwards. Bounding the number of such “significant”
points in time immediately gives an upper bound on w(p). Formally, we introduce the
following definition.

Definition 4.2 The “tuple of significant turns” of a route p is the tuple of integers
S{p) = (ty, ..., tx) with the following properties. {(Recall that p(i) denotes the i-prefix
of p).

LSt < S5l

245

-
t~a
-
™~
i

2 4 2 4 2
o———o oo @
4 2 4| 2 4

. | . 3 . | . K] .

Figure 2: Active times for edges in the cyclic traffic-light schedule S;.

2 w(p(t;))) =1, for 1 <1<k
3. Forevery l €1 <kand t; <t < |pl, w(p(#)) = i.
4. For every | <1 <k, ¢; is the least integer satisfying properties 2 and 3.

The tuple S{p) of significant turns is said to be of size |5(p)| = . In case such a
tuple does not exist {e.g., when w(p) < 0), S(p} is empty and |S(p)| = 0.

Fact 4.3 For every route p, wip) < [S{p)|. 1

Lemma 4.4 Given an i-directional route p on a grid, fori <3, p’s tuple of significant
turn satisfles |S(p)| < i —1. 1

Combining Fact 4.3, Lenuna 4.4, and Fact 4.1 we get the desired result.

Theorem 4.5 Assume that the network uses the cyclic Sy traffic-light schedule and
that a vertez v sends a message to a vertez w along a route p, and |p| = d. Ifp is a
shortest path then the message arrives to w within no more than 2. d + 3 time units,
and if p is three directional then the message arrives within no more than 2. d+4 time
untts. |

246

4.2 Telephone routing on trees

Our main goal in the following two subsections is to coustruct two instances of the
TRS problem on the grid, with routes that are 2— and 3-directional, for which the
upper bounds of Theorem 4.5 are the best possible. The construction is presented on
two steps. First we study some basic properties of the TRS problem on trees. Then,
in Subsection 4.3 we define the notion of a simple path embedding of a tree in a graph
and use such an embedding to build the desired problem instances.

Throughout the rest of this section, T = (V;, £y} denotes a rooted tree with root
r. We associate with T a TRS problem instance denoted Ap in the following way. For
each leaf I in T create a message M. The message has to be delivered from [to the
root 7 along the (unique) path between them in the tree. Note that the time needed
for completing the schedule in this instance equals the hroadcast time from # in the
tree T' (see [SCHS1]). In order to construct a TRS problem on a tree T that is hard to
schedule,; we need to enforce some degree constraints on the tree vertices. Specifically,
we heed a tree with “many” vertices of “high” degree on every leaf-to-root path. For
this purpose we introduce the following definition,

Definition 4.6 Property p(k.K)

Given an integer &, and a set of 1 ordered pairs of integers K = {(s;, kiY: 1 <i<m}
such that 1 < & < & for every /. the tree satisfies property p(k, K} if the following
holds.

L. For every vertex v in T, the number of children of v in the tree is either & or ks
for some 1.

2. Every path from a leaf { € V] to the root r contains at least s; vertices with
ki children, for every pair (s;, k) in the set K. It is required that the sets of
such vertices corresponding to k; and k;, & # kj, are disjoint (that is, the path
contains at least sy vertices of degree k|, and at least s, different vertices of
degree K, etc.)

Lemma 4.7 Suppose T = (V\, E1) is a full tree of height n {i.c., all leaves are at depth
precisely), and furthermore, it satisfies property p(k,K) for K = {(s;, k) : 1<:i<
m}. Then T(Ar) 2 n - k+Tisi-(ki—k). 1

Applying Lemma 4.7 to the trees Sp; and D3; of Figures 3,4 we get that T(Asp,) 2
2.7+ 3 and T(AD:;J) =29 +4.

4.3 The lower boﬁnd

Definition 4.8 A function F': ¥, — V is a simple path embedding of the tree T =
(W1, £1) in the graph & = (V, £) if the following conditions hold.

1. (F(v1), F(vy)) € E for every vy, v, € V; such that {v1,1) € E,.

2. Flvy) # Fu) for every v, vy € V) that are on the same path from a leaf to the
root, or share the same parent,

247

Figure 3: The trees T; and Sp;, j > 1. The tree T} is a single vertex. B, is the full binary
tree of height j.

D3

Figure 4: The trees M; and D3;. The tree T is defined in Figure 3

248

Note that in the above definition, each path from a leaf to the root in T corresponds
to a simple path on G. Given a simple path embedding of T in a graph G = (V, E),
associate with G a TRS problem instance by assigning a message M| to each vertex
F(ly = I' € V such that { is a leaf in T, and requiring that M; is to be sent from ¥
to F(r) in G, along the path that corvesponds to the path connecting { and v in T,
Dencte the associated problem instance by Arg. The following fact easily follows by
induction on the height of T

Fact 4.9 T(Arg) =2 T(Ar). 1

By constructing a simple path embedding of Sp; in the grid, where the paths
corresponding to root-to-leaves paths are shortest paths, we are able to show that
T(Asp, ctrmn) = 2-7 + 3. Thus we can deduce.

Theorem 4.10 For sufficiently large m and n, the cyclic treffic-tight schedule Sy is
optimal for TRS(2-DIR) in the worst case. |

Using similar methods, we get.

Theorem 4.11 For sufficiently lurge m and n, the cyelic traffic-light schedule Sy is
optimal for TRS(3-DIR) in the worst case. 1

5 Scheduling arbitrary simple paths on the grid

In this section we deal with arbitvary (4-divectional) simple paths on the grid. We first
give an upper bound by analyzing the performance of the cyclic traffic-light schedule
53, and then give a near-matching lower bound.

5.1 The upper bound

In this subsection we analyze the performance of the cyclic traffic-light schedule S5 on
TRS problems where the input routes are arbitrary simple paths. Fact 4.1 suggests
that it is needed to bound w(p) for a given route p. As some experimentation hints,
w(p)} achieves its maxinmum value (asymptotically) on a route p of carasol shape. In
order to prove this formally, we show how starting with an arbitrary route p, one can
perform a series of transformations on the route, each leaving w(p) unchanged, but
bringing p to a “simpler” form which in a sense is closer to being a carasol. For this
purpose we give some preliminary lemmas and definitions.

Definition 5.1 Given asimple path p on a grid, a “North U-turn” N-U-T(%;7,...,m)},
where j+1 < m, is a subpath p = (ey, €3, ..., €m-j42) of p with the following properties:

L. Edge er = ((i + 1,7), (4, 7))
2. Forall2<!I<m—j 4+ 1L, edgeey = (4,5 +1-2),(4, 5 +1=1))

3. Edge enejyr = ({4, m), (2 + 1,m))

249

The length of p, denoted I(p), is m — j. “East”, “South” and “West” U-turns are
defined in an analogous fashion and denoted by E-U-T, 5-U-T and W-U-T, respec-
tively.

Definition 5.2 Let p = N-U-T(41;71,...,m) and ¢ = N-U-T(é3; j2,...,my). Then
q i3 the parent of p {and p is a child of ¢) iff they lie on adjacent rows, and that p’s
row segment is fully contained in p’s, (or more formally: ¢, =iz + 1, 52+ 1 < jp, and
my + 1 € my) The parenthood relation for S-U-T, W-U-T and E-U-T is defined in an
analogous fashion.

A U-turn is external if it has no parent. The ancestor {respectively descendant)
relation’ is the transitive closure of the parent (resp. . child) relation. The U-Turn
p = N-U-T(i;7,...,m} contains the start (resp., end) point of the route if the route
starts (resp., ends) at vertex (i + 1,s).for some § < s < m.

We need the following simple facts.

Fact 5.3 [fp is a parent of ¢ then H{p) 2 () +2. 1

Fact 5.4 Let p be a path on the grid. Then the parent of each nonexternal U-turn is
unique, |

Definition 5.5 A simple path p in the grid is canonical if every U-turn that does not
contain the start or end points has (at least) one child.

We now define an algorithm for modifying a given simple path p on the grid into
a canonical path. For that purpose we define a transformation ¢ on U-turns. We
state the definition for North U-Turns; analogous transformations apply to the other

directions.,

Definition 5.6 Let p = N-U-T(4 j,...,m), where p doesn’t contain the start or end
points,-and the path p does not lie on the vertices

-+ Ly+1)n{E+Li+2),.,+1,m~-1)
Then the transformation ¢ applied to p in p replaces the subpath p by the subpath
(L4 1L,750E+ L7+ 1)+ 1L,m).
The resulting path is denoted ®(p, p). Note that this path ®{p, p) is kept simple.

Lemma 5.7 Given a route p, the transformation w preserves w(®(p, p)} = w(p). |
Fact 5.8 An application of the transformation ® to p decreases its length by 2, 11

We now present the modification algorithm. The algorithm takes as input a route
p and makes several applications of & to it.

260

Algorithm 5.9 Route canonization algorithm
I pe=p

2, While there exists a U-turn p on p’ to which transformation ® can be applied
do o' — ®(p, o).

3. Return(p’).
Lemma 5.10
1. Applying the canonization algorithm 5.9 to a path p leaves w(p) unchanged.”

2, The output p’ of Alg. 5.9 is canonical.
put p

Lemma 5.11 (iven a canonical route p having three (different) U-turn’s of the same
type, p,q and v, one of these U-turns is a descendant of one of the other two. |

Lemma 5.12 Assume that p is a canonical path on the grid. Then
1. p contains at most two external N-U-T's,

2. If p contains two external N-U-T's, then every N-U-T of p has at most one child.

3. f p contains only one external N-U-T then there is at most one N-U-T having
two children, while all the other N-U-T’s have at most one child.

4. A similar claim applies to E’-U-T’s, W-II-T’s and 5-U-T's. 1

Finally, we derive our main claim.

Lemma 5.13 For cach roule p such that |p| = d, wip) < 2.

Vd. 1

By FFact 4.1 we now have

Corollary 5.14 Assume thal the grid network employs the cyclic schedule S;. Let v
and w be a pair of vertices on a grid. Suppose that v sends a message to w along an
arbitrary simple path p. Then the message arrives after no more than 2 |p| +2 -2 -
\/m + 2 time units. |

We comment that for every constant ¢ < 2. /2, there exists a route p between two
vertices v and w such that the cyclic traffic-light schedule Sy completes the routing
along the path in more than 2- [p| + ¢ \/m time units. This fact can be observed by
inspecting the route in Figure 5.

251

)]]

Figure 5. A route on which w is maximal.

5.2 The lower bound

The purpose of this subsection is to construct an example of a TRS problem involving
simple paths on the grid, for which the best possible schedule time approaches the
upper bound presented in the previous subsection. For this purpose we introduce the
definition of a bounding frame of a simple path on a grid.

Definition 5.15 The frame f(p) of a simple path p on a grid is defined as the least
rectangle containing the path. The length and height of the frame are the length and
height of the rectangle.

Let d be a positive integer. We want to construct a tree of height d and embed’ it
in the grid, in such a way that the TRS instance resulting from all leaf-to-root paths
in the tree is “hard” to schedule. We choose a grid Gry,, with sufficiently large m
and n, and a vertex v in the grid such that the following construction is possible. Let
us define a sequence of d sets ;. 1 <4 < d, of paths all starting at v. We define the
paths in 5; inductively with the paths in S;., being the paths of S;, each extended in
several ways by additional edges. All the paths in 9; have length 7. We also maintain
the following out-propagation propetrty: For cvery path p in 5;, the end vertex w of p

is on f(p).
Algorithm 5.16 Ewmnbedded tree construction
].. JS'[) — @.

2, Stage 1: Create S5; by adding to Sy the four edges connecting v to its four
neighbors in the grid (the edges are regarded as paths of length one).

3. Stage + 1 Assume that the sets Sy, for | £ & < i < d, are already defined. For
every path p = (ey, ..., e;) in 5; perform the following. Let w = (wy,w;) denote
the end vertex ol the path p. Extend this path to a number of new paths, by
connecting w to some ol its neighbors, and add the augmented paths to Sy,

252

In doing so, it must be verified that the resulting paths remain simple. Thus add
to Si;1 the path obtained by extending p by connecting w to his left neighbor
iff p does not contain a point (wy,ws) for some integer wa < w,. Le., extend p
leftward iff there is no vertex in p at the same row and to the left of w. A similar
action is performed for all the other directions.

If the above method can be used in order to connect w to ! of its neighbors for
some 0 <1 £ 3, we say that p can be extended in ! ways.

Lemma 5.17 Let w = (iy,7;) be the end vertex of a route p € S,.. Then
L. w is on the border of f(p), and

2. p can be extended in at least two ways., |

In the above construction it is possible to associate with 5y a tree Fy in the following
way. Define a vertex v; to be associated with v. Assume now that for a given path p
in 5; we extend the end vertex w of pin 2 < k < 4 different ways. Then add to the
tree k new (distinct) vertices and connect them to the vertex in the tree, associated
with w. Clearly this is a simple path embedding of Fy in the grid.

Lemma 5.18 The tree y satisfies property p(k,K) with k =2 and K = {(2.vVdF 1 -
3,3,(L} 1

By Lemma 4.7 and Fact 4.9 we have
Corollary 5.19 T{Ar,) 22-d+2-vVd+1—-1. 1
We can summarize Corollary 5.19 and Corollary 5.14 in the following theorem.

Theorem 5.20 Routing an instance of TRS,(4-D I R) may require 2-d+0(V/d) rounds
in the worst case. |

References

[FP30] A.M. Farley and A. Proskurowski. Gossiping in grid graphs. Journal of
Combinatorics information and system science, 15:161-162, 1980.

(HHL88] S. Hedetniemi, S. Hedetniemi, and A. Liestman. A survey of gossiping and
broadcasting in communication networks. Networks, 18:319-349, 1988,

[Kor90] G. Kortsarz. Telephone routing. M.Sc. Thesis, 1990.

[KP92] G. Kortsarz and D. Peleg. Traffic-light scheduling on the grid. Discrete
Applied Mathematics, 1992. To appear.

[LR91] A.L. Liestman and D. Richards. Network commuaication in edge-colored
graphs. Unpublished Manuscript, 1991.

[SCH81] P.J. Slater, E.J. Cockayne, ancd T. Hedetniemi. Information dissemination
in trees, SIAM J. on Compul., 10, 1931.

DISTRIBUTED COMPUTING ON
ANONYMOUS HYPERCUBES WITH
FAULTY COMPONENTS*
(Extended Abstract)

Evangelos Kranakis
{(kranakis@scs.carleton.ca)
Nicola Santoro
{santoro@scs.carleton.ca)

School of Computer Science
Carleton University
K18 5B6 Ottawa, Ontario, Canada

Abstract. We give efficient algorithms for distributed computation on
anonymous, labeled, asynchronous hypercubes with possible faulty com-
ponents (i.e. processors and links). The processors are deterministic and
execute identical protocols given identical data. Initially, they know only
the size of the network (in this instance, a power of 2) and that they are
inter-connected in a hypercube network. Faults may occur only before
the start of the computation (and that despite this the hypercube re-
mains a connected network). However the processors do not know where
these faults are located. As a measure of complexity we use the total
number of bits transmitted during the execution of the algorithm and
we concentrate on giving algorithms that will minimize this number of
bits. The main result of this paper is an algorithm for computing boolean
functions on anonymous hypercubes with at most v faulty components,
4 2 1, with bit complexity O(N8n(7)>)* loglog N), where ~ is the num-
ber of faulty components, of which A is the number of faulty links, and
8 (%) is the diameter of the hypercube.

1980 Mathematics Subject Classification: 68Q99

CR Categories: C.2.1

Key Words and Phrases: Anonymous labeled hypercube, boolean
function, diameter, faulty component, group of automorphisms.

* Research supported in part by National Science and Engineering Research Council
grants.

254
1 Introduction

In this paper we consider algorithins which are appropriate for distributed com-
putation on anonymous, labeled, asynchronous, n-dimensional hypercubes Q,
with faulty components (i.e. processors and links). The processors occupy the
nodes of a hypercube and want to compute a given boolean function f on
< N = 2" variables. Initially each non-faulty processor p has an input bit b,.
When the computation terminates all processors must output the same value
f(< by : p non-faulty >).2

The problem arising is to determine the bit complexity (i.e. total number of
bits transmitted) of computing boolean functions on faulty hypercubes. In the
present paper we give efficient algorithms for computing boolean functions on
such networks.

1.1 Assumptions and Related Literature

The network we consider is the anonymous, asynchronous hypercube with pos-
sible faulty components. The number of faulty components may be arbitrary as
long as the hypercube remains connected. If a processor is faulty then all the
links adjacent to it are also interpreted as faulty. Faults may occur only before
the start of the computation. We assume that the network links are FIFO, and
that the processors have a sense of direction. By this we mean that the hyper-
cube is canonically labeled (the label of link xy is i if and only if x,y differ at
exactly the ith bit) and that these labels are known to the processors concerned.
in addition we assume that the following assumptions hold:

— the processors know the network topology (in this instance hypercube), and
the size of the network, but they do not necessarily know where the faulty
links may be,

— the processors are anonymous (i.e., they do not know either the identities
of themselves or of the other processors), they are deterministic (i.e. they

all run deterministic algorithms), and they all run the same algorithm given
the same data.

The assumptions listed above are meant to take “maximum” advantage of net-
work distributivity, For a discussion regarding the necessity of some of the above
assumptions see {2]. Routing algorithms on hypercubes have been studied in [6].
Faulty hypercube networks have been examined in several papers under the much
stronger assumption of synchronous and/or non-identical processors. In such
networks it is possible to apply reconfiguring techniques {7] (nodes of an n — 1-
dimensional hypercube are mapped into non-faulty nodes of an n-dimensional
hypercube with O(1) dilation) or even non-faulty subcube techniques [5] (for a

2 Our notation by for the bit associated with processor p does not mean thai we assign
names to processors. In addition the input < b, : p € non-fanlty > represents the
assignment of bits to all the non-faulty processors of the network, and it will be
computed by all the processors via an “input collection” algorithm.

255

given k determine an n — k-dimensional subcube with no faulty links). However
such techniques are not applicable in our case since they require the existence
of processor 1dentities.

1.2 Notation

We denote by A (resp.) the number of faulty links (resp. processors) and let
¥ = A+ 7 be the number of faulty components. Let @,, denote the n-dimensional
hypercube on N = 2" nodes; zy is a link of @,, where 2 = x;-.-2, and
Y=y Yn,if 2; # y for a unique {; in addition, ¢ is called the label of 2y and
we write £(zy) = . Let Qn[l1,...,15] denote the hypercube @, with the links
li,..., 1) faulty. In general, the hypercube always remains a connected graph if
the number A of faulty links is < log N. However it is possible that the hypercube
remains connected even if A > log V.

We define 6,(2) as the maximal possible diameter of a connected hyper-
cube with at most A faulty links, i.e. 8,(}) := max{diam(Qn[l,...,1,]) : p <
A and Qnlh,...,1,) is connected}. We define similarly §,(v) for the more gen-
eral case of hypercubes with at most v faulty components. If a processor is faulty
then we assurme that all links adjacent to it are also faulty. This means that a
hypercube has log N faulty links per faulty processor, which gives < nlog N
faulty links associated with these » faulty processors.

1.3 Results of the paper

Previous results on computing boolean functions on anonymous, labeled net-
works can be summarized as follows.

Network Bit Complexity Paper
Rings O(N?) 3

n-Tori, n constant [O(N1+1/7) 4]
Hypercubes: ¥ = 0[O(N log® N) [8]
Hypercubes: ¥ > 1JO(NA?5,(7)? loglog N)|This paper

The result of [3] is valid both for oriented as well as unoriented rings. The result
of [4] is valid for n-dimensional tori where n is a constant (independent of the
number of nodes). Moreover the constant implicit in the bit complexity bound
O(N1+1/m) depends on n without the algorithm of [4] giving any indication of
its size. Hence this result cannot apply to the hypercube which has variable
dimension n. Bit complexity bounds for non-faulty hypercubes are given in [8].

In this paper we give an algorithm for computing boolean functions on anony-
mous hypercubes having bit complexity O(N A2¢5,,('r)2 loglog N). Here N is the
number of nodes, n = log N. Since a connected, n-dimensional hypercube with
polylogarithmic number of faulty components has diameter O(log N) (see [1})
we have an O(Npolylog(N)) bit complexity for n-dimensional hypercubes with
1 < v = polylog(N) faulty components.

Notice the different estimates on the bit complexity implied by the algorithm
for hypercubes with exactly one faulty link versus hypercubes with exactly one

256

faulty processor; in the former case the bit complexity is O(Nlog? N loglog N)
while in the latter O(N log® N loglog N). At first glance it may also come as a
surprise that the bit complexity in a faulty hypercube can be lower than the bit
complexity in a non-faulty hypercube (e.g. this can be the case when there are
no faulty processors and A < log N//Tog log N). This however can be explained
by the fact that in hypercubes with faulty links we can take advantage of asym-
metries in the network topology in order to design algorithms with improved bit
complexity. Thus our main algorithm takes advantage of “symmetry breaking”
by distinguishing faulty links from non-faulty links.

2 Hypercubes with Non-faulty Processors

In this section we give algorithms for computing boolean functions on a hyper-
cube which does not have any faulty processors, i.e. # = 0. We indicate later

how to extend our results to hypercubes with arbitrary faulty components. Qur
main theorem is the following.

Theorem 1. In a hypercube with at most)\ faulty links, A > 1, every computable
boolean function can be computed in O(NA%6,(2)2 loglog N) bits,

ProoF (outline) The proof of the theorem is outlined in subsections 2.1,2.2. Be-
fore giving a detailed account of the algorithm we present a summary of the main
steps of our construction. Let f be a given boolean function. Each processor p is
given an input bit b, and the boolean function J. Let Input =< b, :p€ Q, >.
Under the assumptions of subsection 1.1 each processor p concerned executes the
following algorithm: (1) determines whether or not the hypercube has a faulty
link, (2) uses a “path-generation” algorithm in order to determine the location of
the faulty links relative to itself, (3) uses an input collection mechanism in order
to determine the entire input configuration Input,, where Input, denotes p’s
view of Input, (4) determines whether or not the given function is computable
on the given input (this step is actually performed only locally and hence does
not contribute to the overall bit complexity) by checking an invariance condi-
tion on the given function £, (5) if f is computable then processor p outputs
f(Inputp). In the sequel we describe the algorithm in several steps following the
above summary.

2.1 Determining if there are any faulty links

The first step in our algorithm is to determine whether or not the hypercube
has any faulty links. This follows from the following lemma.

Lemma 2. There is an algorithm with bit complerity O(N log? N) which detects
whether or not the hypercube has any faulty links.

ProoF. Let 0 = “I have no faulty links” and let 1 = “I have a fauity link”. Each
processor initializes the variable value., To determine whether there is a faulty

257

link the processors execute an algorithm for computing the boolean function
ORpy by using the boolean constants 0,1 previously defined. If the output is 1
then there is a faulty link else there is no fauity link. The algorithm they execute
is as follows:

Faultylink
Algorithm for processor p:
Initialize: value, ;
fori:=1,...,log N do
send value, to all neighbors of p;
receive valuey from all neighbors ¢ of p; .
compute valuep := or({value, : ¢ is neighbor of p}) V valuep;
od;

output value,.

There are log N iterations of the for loop and in each iteration < log N bits
are transmitted by each processor. Hence the bit complexity of the algorithm is
O(N -log® N). It remains to prove the correctness of the algorithm. We show
that if there is a faulty component then every processor of the hypercube is at
distance < 1 + log N from a faulty link. Indeed, let & be an arbitrary node. We
want to show that z is at distance < 14-log N from a faulty link. Indeed, let y be
any node which is adjacent to a faulty link. There is apath zg = 2,21,..., 24 =¥
of length d < log N connecting # to y in the faulty hypercube. Since y is adjacent
to a faulty link it is clear that z is at distance < 1 + log N from a faulty link.
Hence the lemma is proved, =

If it turns out there is no faulty link then (assuming that the given boolean
function is computable in the network) they execute the algorithm of [8] which
has bit complexity O(N log® N). Else they proceed to the next phase of our
algorithm.

2.2 Path generation and input collection

The algorithm to be presented in this subsection requires the existence of pro-
cessors which are adjacent to faulty links. Therefore this phase is executed only
if it turns out from the execution of the algorithm in subsection 2.1 that A > 1.
Let f be a boolean function known to all processors of the (faulty) hypercube.
We present the algorithm in three steps. The processors execute the following
algorithm.

Main Algorithm (A > 1):

1. PATH-GENERATION: The processors adjacent to faulty links become leaders
and compute the configuration of the hypercube as follows. Let M be the set
of faulty links. Let I be a processor adjacent to a faulty link. For each z € @,
there are many paths connecting L to z. However I can choose a set of paths
(in a canonical way) {p(L,z) : * € Qu} such that p(L,z) connects L to z,
has length < 8,()) and avoids the missing link(s). Each processor adjacent to a
faulty link generates a set of paths, one path for each processor of the hypercube.

258

In generating paths the processor takes into account its current knowledge of the
position of the set of faulty links (which is only a subset of the set of all faulty
links). Each such path is transmitted to its destination node along the sequence
of links determined by this path. If during transmission of this path a faulty
link is encountered then the corresponding processor adjacent to this faulty link
sends back (along this same path but in the reverse direction) to the originating
processor a complete list of its missing links. Based on this information each
processor adjacent to a link in M updates its current list of faulty links and
generates a new set of paths which avoid the previously encountered faulty links.
Now iteration of this procedure continues as long as new faulty links are found.®
After execution of this algorithm all processors receive a complete path from
each processor adjacent to a link in M.

Since each iteration of this algorithm generates a new collection of paths
by “eliminating” newly encountered faulty links and since there are at most
A faulty links it is clear that after at most XA iterations all processors will re-
ceive paths from all processors adjacent to processors with faulty links. The bit
complexity of this algorithm depends on the length of the paths which are cre-
ated during the execution of the X iterations of this algorithm (in this instance
the paths have maximal possible length §,())) and can be computed as before.
There are < 2 processors adjacent to the A faulty links. Paths can be coded
with 6, (A)loglog V bits. Each path is transmitted at a distance < 6,(}). Each
iteration of the algorithm involves < 2) processors adjacent to a faulty link in
M. Hence each iteration of the algorithm involves the transmission of at most
O(N A6,(X)? loglog N) bits. Since the number of iterations is < A the actual bit
complexity of this step will be O(NA26,({))?loglog N) bits.

2. INPUT-COLLECTION: For each 2, and L € M, processor ¢ sends its input bit
b, together with its identity p(L,2) to L in the reverse direction along path
p(L,) (p(L,z) is the path computed in step 1). Now L has a view of the entire
input configuration of the hypercube, say Ir, and can compute f(Ir). The bit
complexity of this step is O(NA8,(A) loglog N).

3. Let F be the set of processors which are adjacent to faulty links. By executing
the above algorithm each processor L € F' computes its “view” Ip of the given
input configuration. In particular, each L € F will know the view Ir: of all
processors I! € F. Hence all processors L € F' may execute the invariance test

FUL) = f(Ip), for all L, L € F. (1)

If (1) is true each processor L € F computes f(I5) and transmits it to all
processors of the hypercube along the paths previously specified. Finally, F(Ir)
18 the output bit of each processor of the hypercube. If on the other hand (1) is
false then the processors L € F will transmit to all processors of the hypercube
that f is not computable on the given input. Clearly, test (1) is local to the

% Notice that nowhere in this algorithm do the processors need to know an upper
bound on the number of faulty links. The iterated procedure terminates execution
when no new faulty links are found.

258

processors and does not contribute to the overall bit complexity of the algorithm.
The bit complexity of this step is O(N A, ())loglog N).

Notice that nowhere in this algorithm did we have to assume that the proces-
sors have identities. All identities used there were generated by the algorithm. In
addition the processors execute identical algorithms given identical input data.
This completes our outline of the proof of Theorem 1. =

Theorem 1 raises the problem of studying 6,()) as a function of A. Results
of B, Aiello and T. Leighton in [1] show that an n-dimensional hypercube with
n?(1) worst-case faults can simulate the fault-free n-dimensional hypercube @,
with only constant slowdown. In particular, this implies that 6,()\) = O(n), for
A =n%1), Ag a consequence we obtain the following result for hypercubes with
polylogarithmic number of faulty links.

Theorem 3. The bit complexity of computing boolean functions on o hypercube
with polylogarithmic number of faully links (i.e. A = (log N)O(l)) is

O(N log* N) if A < log N//Toglog N
O(NX?log® N loglog N) if A > log N/\/Toglog N.

PROOF. If A = 0 then by (8] the bit complexity of computing f is O(N log* N).
If A > 1 then applying Theorem 1 we see that the bit complexity of computing
[is O(NA26,(X)?loglog V). Since the number of faulty links is (1) we have
that 8,(A) = O(n). Hence the combined bit complexity is

O(N log® N max{log® N, 3 loglog N}). (2)

It follows from formula (2) that the bit complexity of computing boolean func-
tions on a hypercube with A = (log N)?) faulty links is as in the statement of
the theorem. m

Thus we see that log N/+/loglog N is the threshold number of faulty links
for which the bit complexity of computing boolean functions on an N node
hypercube exceeds the bit complexity in a non-faulty hypercube,

3 Determining the Computability of f

Condition (1) tests the computability of the boolean function f on the given
input. However, in the case where the set F of nodes which are adjacent to the
set of faulty links {ly,...,1,} is transitive (i.e. for any two processors L, L' € F
there exists an automorphism ¢ € Aut(Q@n[l1,...,1\]) such that ¢(L) = L) we
can in fact test whether the given function f is computable on all inputs. This is
done by checking whether or not the given boolean function f is invariant under
all automorphisms of the network. Indeed, assume the function f is computable
on the hypercube @,[l1,...,1,]. Let I be an input configuration and let ¢ be an
automorphism of Qu[l1,...,1,]. Let p be a node and g its image under ¢, i.e.
g = ¢(p). But is is clear that f(I) = f(I*) since p, ¢ execute the same algorithm
given identical input views. Conversely, assume that f is invariant under all

260

automorphisms of the above faulty hypercube. The previous input collection
algorithm shows that for any processors L, L’ € F the views Ir, It generated
by the algorithm are identical up to automorphism. Notice that the condition
on the transitivity of the set F is always satisfied when A = 1. Hence we have
the following theorem.

Theorem 4. Assume that the set of processors adjacent to the faulty links of
the connected hypercube Qu[ly, ..., 1\] is transitive. Then a boolean function f is
computable in Qnlly, ..., 1)) if and only if it is invariant under all the qutomor-

phisms in Aut(Qnlh, ..., 0]). Moreover the bit complexity of computing all such
boolean functions is O(NA25,(2)? loglog N). m

To check efficiently the invariance of a boolean function under all auto-
morphisms of the network the processors execute locally the algorithm speci-
fied in Lemmas 5, 6. This requires computing the group of automorphisms of
the corresponding hypercube. Consider the bif-complement automorphisms that
complement the bits of certain sets of components components, i.e. for any set
S C{L,...,n} let ¢s(x1,...,2n) = (y1,...,4n), Where y; = 2; + 1,ifi e S,
and y; = @; otherwise (here addition is modulo 2). Let F, denote the group
of bit-complement automorphisms of Q. Let Aut(Q,[h, .. .,1A]) be the set of
automorphisms of Qn[ly, ..., 5] that preserve the labels of its links.

Lemmab5. Let l;,...,I5 be arbitrary links of the hypercube Q.. If the net-
work Qull1, ..., 1)] is connected then Aut(Qy,[h, . .,1)) is @ vector subspace of
Aut(Qn) of dimension O(log A) which has at most 2X? elements. Moreover these
elements can be computed in time O(min{A%, A2"}).

PRrooF. First we show that Aut(Qn[l1,...,5h]) < Aut(Q,). As in [8] we can
show that all the automorphisms of Q,{l,. .., 1] must be of the form ¢g, for
some S C {1,2,...,n}. Indeed, let ¢ be an arbitrary automorphism and let
z,y be arbitrary nodes in Qu[l,...,1]. We claim that #(z)+¢(y) = z+ y
(here addition is componentwise modulo 2). To see this take a path, say zq 1=
Z,Z1,..., &k ;= ¥, joinning & to y. Since by definition ¢ preserves labels we must
have that ¢(2;) + ¢(ziy1) = #; + 2441, for all i < k. Hence the claim follows by
adding these inequalities modulo 2. Now if ¢(0") = (py, ..., Pn) then it is clear
that ¢ = ¢5, where S = {1 < i< n:p; #0}).

Next we give an algorithm for computing the elements of the automorphism
group Aut(Qu(l, ..., 5]). Put L = {i1,...,11}. The automorphisms of the faulty
hypercube Qul[l1,..., 5]} act naturally on the set of links L in the following
way: if I = zy then ¢(I) = ¢(2)¢(y). For this action it is easy to see that for
all I,I" € L there exist at most two automorphisms, say ¢;, ¢, which map [
into I'. This implies that [Aut(Qu[l1,...,L])] < 2)2. Since the automorphisms
of @ull,...,1\] are precisely the automorphisms of),, which leave the set I
invariant we are lead to the following algorithm whose output S is the set of
automorphisms of @,[l1, ..., 1]

Algorithm for computing the automorphism group

261

begin S :=§;

for LI =14,....,1 do
compute @1, Yiv ;
if qﬁ],y(L) C L then §:= 85U {qﬁ:’;r};
if Y10 (L) C L then § :=SU {1 };
fi;
od;

output S.

The output S of the above algorithm is the desired group of automorphisms of
Qnlly, ...,] since Aut(Qully,... . L)) ={¢ € Aut(Q,) :¢(L)C L}. m

Lemma 6. There is an algorithm computing the group Aut(Qn{ly,...,1\]) in
O(NA26,(X) loglog N) bits.

Proo¥ (outline) Using the first part of the algorithm of subsection 2.2 the
processors adjacent to faulty links can compute the missing links of the entire
hypercube. At the end of this algorithm “only” the processors adjacent to faulty
links can compute the automorphism group of Q,,[l1,. .., {] using the algorithm
of Lemma 5. These processors now compute a basis of the automorphism group
consisting of O(log A) automorphisms and transmit this to the rest of the pro-
cessors. This proves the lemma. =

We also mention an interesting observation concerning the size of the auto-
morphism group of the faulty hypercube.

Theorem 7. If for some ¢ the number of faully links labeled i is odd then
|Aut(Qnllr, ...,)] < 2.

PROOF. Let G = Aut(Qn[li,...,11]) and assume that G is not the identity
group. For 1 € ¢ < n define

L= {ll,;..,lA}
L;={l€ L: label of lis i}.

For each ¢ every automorphism in & permutes ;. Now we can show that for
alll € L, |G| € 2, where G} is the group of automorphisms fixing I. Indeed, if
¢ # id and ¢(I) = I then ¢ = $(;; where i is the label of link {. In fact, if the

label of { is 7 then
G = <id> if¢u €G
=1« ¢y > Py €G

If IS denotes the orbit of I in G then it follows from the identity |Gi| - [I%] = |G|
(see Wielandt [9]) that

"GI - {]Gl if‘i’{s’} ¢ G
|G|/2 if Py €G

262

It follows that

L o e . ry TG i d €6
|Li| = (# of orbits of G acting on L;) { IGI/2 if ;) € G

which completes the proof of the theorem. m

Notice that ¢y is the only automorphisms in G that has “fix-points” when
acting on L;. In particular, if for all S with ¢5 € G we have that |S| > 2 then
for all ¢ |L;| is even.

4 Hypercubes with Faulty Components

So far we have considered the case of hypercubes having only faulty links. How-
ever, it is straightforward how to adapt the Path-generation and Input-collection
algorithms presented in section 2 to the case of hypercubes whose faulty compo-
nents may be links and/or nodes. If a node is faulty then all its adjacent links are
interpreted as faulty. The Path-generation algorithm is initiated by non-faulty
processors which are adjacent to faulty links (there are < 2X such processors) and

the iterated procedure is repeated < A times. Thus we can prove the following
theorem. .

Theorem 8. In a hypercube with v faulty components exactly A of which are
faulty links, A > 1, the bil complezily of computing boolean functions is

O(Né,(7)*A%loglog N). m

5 Conclusion

We have presented algorithms for distributed computation on anonymous asyn-
chronous hypercubes with faulty components. Qur algorithms rely on the possi-
bility of distinguishing faulty links from non-faulty ones and are based on broad-
casting and path generation. The hypercubes may be faulty but the faults may
occur only before the start of the computation. An interesting problem would be
to design more “adaptive” algorithms that allow for faults to occur at different
parts of the computation.

Acknowledgements

Many thanks to Danny Krizanc and Hisao Tamaki for useful advice and the
referees for useful comments.

263
References

1. B. Aiello and T. Leighton, “Coding Theory, Hypercube Embedding and Fault
Tolerance”, Proceedings of 2nd Annual ACM Symposium on Parallel Algorithms
and Architectures, 1991, 125 - 136.

2. D. Angluin, “Local and Global Properties in Networks of Processors”, 12th An-
nual ACM Symposium on Theory of Computing, 1980, 82 - 93.

3. H. Attiya and M. Snir and M. Warmuth, “Computing on an Anonymous Ring”,
Journal of the ACM, 35 (4), 1988. Short version has appeared in proceedings
of the 4th Annual ACM Symposium on Principles of Distributed Computation,
1985, 845 - 875.

4. P. W. Beame and H. L. Bodlaender, “Distributed Computing on Transitive Net-
works: The Torus”, 6th Annual Symposinm on Theoretical Aspects of Computer
Science, STACS, 1989, B. Monien and R. Cori, editors, Springer Verlag Lecture
Notes in Computer Science. 294-303.

5. B. Becker and H.-U. Simon, “How Robust is the n-Cube?”, Proceedings of IEEE
27th Annual Symposium on Foundations of Computer Science, 1986, 283 - 291,

6. M-S. Chen and K. G. Shin, “Adaptive Fault-Tolerant Routing in Hypercube Mul-
ticomputers”, IEEE Transactions on Computers, 39 (12), December 1990, 1406 -
1416.

7. J. Hastad and T. Leighton and M. Newmann, “Reconfiguring a Hypercube in the
Presence of Faults”, Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, 274 - 284.

8. E. Kranakis and D. Krizanc, “Distributed Oomputmg on Anonymous Hypercube
Networks”, Proceedings of the 3rd IEEE Symposium on Parallel and Distributed
Processing, Dallas, Dec. 2-5, 1991, 722 - 729,

9. H. Wielandt, “Finite Permutation Groups”, Academic Press, 1964.

Message Terminate Algorithms for Anonymous
Rings of Unknown Size

Israel Cidon and Yuval Shavitt

Electrical Engineering Dept.
Technion - Israel Institute of Technology
Haifa 32000, ISRAEL

Abstract. We consider 2 ring of unknown number of anonymous pro-
cessors. We restrict ourselves to algorithms that are message terminate,
i.e. the algorithm terminates when no more messages are present in the
system but the processors may lack the ability to detect this situation.
The work addresses algorithms (both deterministic and probabilistic)
that always terminate with the correct result. We show the following:

— A deterministic algorithm for orientation that requires a symmetiry
breaking marking on the links and uses O(zn log? n) bits for commu-
nication and O(n) time. A Las-Vegas version of this algorithm that
uses probability to break symmetry has the same average communi-
cation and time cost.

~ A deterministic algorithm for pattern searching that uses O{n - |\5|)
communication bits for a pattern of length |S|. Computing AND and
OR are simple cases of that algorithm,

— A probabilistic algorithm for dividing an even ring to pairs that uses
O(nlog n) communication bits and time.

— The impossibility of computing a class of functions called nonsym-
metric that includes: leader election, XOR and finding the ring size.
The same technigque can be applied to prove the impossibility of
dividing an odd ring to a maximal rumber of pairs.

1 Introduction

Ring networks have traditionally been used as a simple framework for evaluating
distributed computation and communication systems. The ring topology can
be used to demonstrate the implication of symmetry on the performance and
feasibility of certain distributed tasks.

In this work we consider a ring of unknown number of indistinguishable pro-
cessor that communicate through messages sent over bidirectional links (anony-
mous ring). We use an asynchronous model in which message transfer time is
arbitrary long but finite. Algorithms for such asynchronous systems are gener-
ally message driven in the sense that a processor acts (changes its state, sends
messages, performs computation etc.) only upon the reception of a message and
idles afterwards until a new message is received. We focus on algorithms that are
message terminale (MT), i.e., the algorithm terminates when no more messages
are present in the system (in buffers or in transit at the transmission lines) and

265

no processor is at a state it can initiate a message. The processors may lack
the ability to recognize such termination and it might be detected only by an
outside observer. The stronger property of processor termination (PT) cannot
be achieved for most non-trivial problems in anonymous ring of unknown size. In
[4] Attiya, Snir and Warmuth prove that no (deterministic) processor terminate
algorithm exists even for “simple” functions such as OR and AND. In fact their
proof can be easily extended for probabilistic PT algorithms as well.

Most of the algorithmic work in the area of anonymous networks has con-
centrated on models where some knowledge on the size of the network is known
in advance (See (3], for lower bounds see [1, 10]). In the absence of knowledge
it was shown in [9] that functions such as finding the size of the ring or leader
election can be computed by a probabilistic message terminate algorithm with
some (arbitrarily small) error probability. The communication and time costs of
these algorithms grow (to infinity) as the error probability reaches zero. These
results were extended in [12] for general topology networks.

In this paper we focus on message terminate algorithms for anonymous rings
of unknown size that terminates correctly for any size n, deterministicly or with
probability 1. On the other hand the average communication and time complex-
ities are always bounded. To the best of our knowledge this is the first time that
such algorithms are given for non-trivial problems. However, most problems can
not be solved this way. We prove impossibility results for a large class of prob-
lems (non-symmetric). It is interesting to note that when the size of the ring
is known, some of the problems that are solved efficiently under our framework
(such as orientation) are as difficult as some problems that are impossible to
solve in our model (such as XOR, see [4]).

We present a deterministic orientation algorithm for a ring of unknown size
that uses marking on the links (similar to [7]) to break symmetry and has a com-
munication complexity of O(n log® n) bits and message complexity of O(nlogn).
IN [t1] Pachl shows a matching lower bound for rings of unknown size with dis-
tinct identities. We also present a deterministic algorithm that generalize pattern
searching. Simple examples of that algorithm are computing AND and OR. With
some modifications the algorithm can also search for nonsymmetric regular ex-
pressions, such as a3*~.

Then, we turn to probabilistic algorithms. In [8, 9] Itai and Rodeh present a
message terminate probabilistic algorithm that calculates the ring size in O{rn?)
messages of O(logn) bits, and an error probability of O(2-""/2). Note, that if
the error probability is taken to zero (or r is taken to infinity) the message
and time cost approach infinity for any n. This is a typical case for a Monte-
Carlo algorithm. In the Monte-Carlo type algorithm, probability is used to break
symmetry and termination is assured, but since symmetric tosses have positive
probability, algorithms in this model may terminate with an error.

We are interested in algorithms that terminate correctly with probability 1
and maintain a bounded average communication and time costs (Las-Vegas).
We present a Las-Vegas version of the orientation algorithm mentioned above.
Instead of using links’ markings to break symmetry, the algorithm uses coin

266

tossing and keeps the (average) bit complexity of O(n log” n). Another Las-Vegas
algorithm presented here is for dividing an even size ring to neighboring pairs
(maximum matching).

We also present an impossibility result for a class of tasks, nensymmetric
problems, that cannot be solved under this framework. Two of the problems in
this class where shown to be unsolvable in the past: finding the ring size by Itai
and Rodeh in {8] and solitude detection (leader election) by Abrahamson et al.
in [2]. Other examples for nonsymmetric problems are XOR and dividing an odd
size ring to a maximum number of pairs (maximum matching).

2 Deterministic Algorithms

2.1 Orientation

Consider a ring of unknown number of indistinguishable processors. Each proces-
sor (node) has a local notion of a left or right link which is termed the orientation
or notien of direction of the node. Two neighboring nodes have the same orien-
tation or same notion of direction if the link connecting them is considered to be
right at one of them and left at the other. Throughout the paper the left or right
link of a processor, means left or right according to the processor local notion
of direction. The left or right side of a group of nodes with the same orientation
means according to their common notion of direction.

In the course of the algorithm each node i is always a member of a segment
of consecutive nodes with the same orientation and keeps a local variable called
length; that specifies its relative position (left to right) in the segment. The
leftmost node in the sequence (the tail} has length = 1, its right neighbor has
length = 2, etc. Therefore, a segment is a sequence of adjacent nodes with the
same orientation that satisfy: 1) Only the leftmost node (the tail) has length = 1.
2) if length; # 1 then length; = lengthiepiy + 1. 3) for the right most node (the
head): length,;gny i) # length; + 1 OR orientation,igny iy # orientation;

The size of a segment is defined as the length of its head. We define a shrinking
segment to be a segment whose head node has changed orientation, i.e. has left
the segment.

General Description. When a node wakes up it determines an arbitrary ori-
entation, forms a single node segment by setting length=1, and sends the message
RIGHT(1) on its right link. Upon the reception of a RIGHT(k) message from
the left neighbor, the node does nothing except for recording the value & + 1 in
the variable _from_left. Consequently, if all nodes initially decide on the same
orientation, each node should receive a RIGHT(1) message on its left link and
the algorithm terminates. However, if & node (which is in general the head of a
segment) receives a RIGHT message on its right link, it knows that the node on
its right has a conflicting orientation, and one of them must flip its orientation.
The node that lost the conflict reverses its orientation and joins the new segment
by setting its vartable lengih to be one higher than that of the winning node.

267

After joining the new segment, the loser becomes the spearhead of the segment
and sends a RIGHT message with the new segment size to its right (its former
left). In general, the winner is the node heading the longer segment. In case
of a tie, a symmeiry breaking marking for each link dictates the winner. One
exception for this procedure is when the node has length=1. As was previously
described a node with length=1{ that receives a RIGHT(k) message on its left
link, saves the length (& + 1) of the segment on its left in the variable Lfrom_left.
In this case {(only}, if a segment from its right will try to capture it, the node
might join the segment on its left first (and will become its head). The decision
which segment to join depends on the length of the two conflicting segments.!
The algorithm eventually stops when all RIGHT messages arrive on left links.

Formal Description. Each node uses the following variables:

length - a node’s position in a segment (from the left).

1 from left - for a node with length=1, its possible position from the left in the
segment on its left, if it would join it.

state - the state of the node, asleep or awaken.

Messages that are sent by the algorithm:

WAKE _UP - an initialization message received from a higher level.
RIGHT(l) ~ a message sent by a node over its right link, that contains its
position in its segment (from left).

The algorithm is given in figure 1.

Correctness Proof. We start with a correctness proof to show that the algo-
rithm always terminates with a complete orientation of the ring. Then we turn
to analyze the message and time complexities of the algorithm.

Lemma 1 A segment can add a node (grow) or loose a node (shrink} only from
i3 right side.

See [5] for the proof.
Lemma 2 All awaken nodes in the ring belong to a segment.
See [5] for the proof.

Lemma 3 A shrinking segment never grows, all its nodes eventually join the
segment on its right excepl for the left most node that might join the segment on
its lefl,

! This can be viewed as if the node queues the message from the left until it was
captured by the segment from the right and then changes orientation and reacted
to the message from its new right that causes it to change orientation again. In this
scenario one extra message is sent. We shall term this version ”the basic algorithm”
and use it in some of the following proofs.

268

Initially all nodes have state = asleep;

for WAKE_UP
{W.0) set state — qwaken; I.fromldeft — —1
(W.1) set length — 1
(W.2) Send RIGHT{(length) on right link
for RIGHT(I)
{R.0) if state = awaken then
{R.1) if received on right link then
{R.2) if (1 > length) OR (I = length AND NOT SYM_BREAK(right link)) then
{R.3) if ((length = 1) AND (I_fromleft > 1 OR
(I-fromdeft =1 AND SYM_BREAK(right link)))) then
/* join the long segment at your left */

{R.4) length — I_fromdeft

{R.5) Send RIGHT(length) on right link

{It.6) end

{R.T else /* the battle is lost - join the segment at your right */
{R.8) change orientation

{R.9) length — [41

{R.10} Send RIGHT (length) on right lmk

{R.11) end

{R.12} else /* message received on left link */

(R.13) Lfromleft — 141

(R.14) else /* node is asleep */

(R.15} set link on which the message recelved to be the left one
{R.168) length — 141

{R.17T) Send RIGHT(length)

{R.18) end

Fig. 1, Orientation Algorithm — Formal Description

Proof:

Let i be the right most node of the shrinking segment before it joins another
segment, and let j be the right most node after i has left the segment. Denote by
li received the value received by ¢ from right that caused 7 to leave its segment.
From line {R.2) it must hold for i that at the reception time & ,eceived > length,.
Since ¢ changes orientation it must send the message RIGHT(I; received -+ 1) on
its new right link, namely to §. At the reception of the message from ¢ at § liolds,
length; = length; — 1 < length; < ki received < i received + 1 = Ij received, We
get length; < ; yeceivea and thus the condition in {R.2) will be satisfied leading

to the execution of lines {R.8) - (R.10) (length # 1) and j must change its
orientation too.

For the left most node in the shrinking segment condition {R.3) is either
false which results exactly as before, or true in that case it will join the segment
on its left. 0

269

Theorem 1 The algorithm terminates within finite number of messages.

Proof:

Every node, upon waking up, sends exactly one message { (W.2) and (R.17)
) and joins a segment. A node that receives a message also sends only one when
it joins a new segment (lines (R.5) and (R.10)). By lemma 3 a segment that
looses a node cannot grow any more, and since segments cannot grow longer
than n, the process of segment growing is finite, and therefore also the number
of messages sent by the algorithm. (]

Theorem 2 When the elgorithm terminates, all nodes are awaken and have the
same orieniation.

Proof:

We shall first prove for the case where all nodes are awakened.

Assume the contrary, i.e. there are at least two nodes with different orien-
tation, and no more messages are received after time ¢o. Clearly, there must be
also two neighbors each to the right of the other. By lemma 2, there must exist
two adjacent segments with different orientation that each one of them is to the
right of the other. The two heads of those segments must have exchange RIGHT
messages, and since one of them must have lost the conflict it must have changed
its orientation,

This proves the theorem when all nodes are awaken. We now show that all
nodes eventually are awaken. Assume the contrary, i.e. a WAKE_UP message
was delivered to some node and there is at least one node that sleeps after the
algorithm has terminated. Since a WAKE_UP message was delivered then there
is at least one segment in the network.

By the same reasoning as above it is clear that there are no adjacent segment
one to the right of the other. Therefore there must be at least one sleeping node
at the right of some segment. A sleeping node that is on the right side of a
segment must receive a RIGHT message and wakes up which contradicts the
assumption that some nodes sleeps forever. (]

Message Complexity.

Lemma 4 [6]

Let F(n) be a discrete function with the following recursive definition:
F(l)=1

F(n) = 117151|,"3f<xﬂ{F(xs) + F(n—1) + min{i,n —i}} = 15?2}/3{1?(0 + F(n—i)+i}

then forn > 1

_J2FP(3)+ % for even n
F(n) = {F(”—;—I) + F(2Y) + 251 for odd n

Lemma 5 For all natural m, F(n) = n(1+ L log, n) where n = 2™,

270

Proof:

By lemma 4: F(n) =2F(5)+ % =2[2F(%)+4}+-

Applying the recursion m = Ioggn times results in: F(n) =2"(F(1)+% m) =
n(1+ 1 logan). 0

Lemma 6 F(n) < n(1+ % logyn) for alln > 2.

Proof:
We prove by induction on n.
F(1)<1-(1+3logy1)=1and F(2)=2-(1+ }log,2) = 3.
We assume that the hypothesis holds for all values less than n, and prove for

In the case that n is even, then by lemma 4 and by the induction hypothesis:

F{n) = 2F(3)+ % < 2(2(1+ $log, 1)) + 2 = n(1+%log2!'2—)+% =
n(1+ 1 logy n)
The case for odd n is similar and can be found in [5]. O

Corollary 1 F(n) = n(1+ 1 logyn) only if n = 2™ and m is natural..

Lemma 7 F(n), as defined in lemma 4, is the mazimal number of messages
that can be sent for increasing the size of a segment to n.

Proof:

Let G(n) be the number of messages needed to be sent to form a segment of
size n. Clearly G(1) = 1, since segments of size 1 are only formed when a node
wakes up and sends a single message.

A segment of size n, n > 1 can be formed in one of the three following ways.

A segment of size n — 1 sends a RIGHT message that wakes up a node which
is asleep, That node sends one message as it join the segment. The maximal
number of messages sent in this scenario is G(n — 1) + 1.

A segment of size i and a segment of size n — ¢ exchanging RIGHT messages
and the bigger one capture the other. The maximal number of messages sent in
this scenario is G(#) + G(n —i)+min{i, n —i}. This is true since each processor in
the defeated segment changes orientation and sends a single message (lines (R.8)
-(R.10}). Note that if a segment of size n+1—i captures a segment of size 1 except
for its leftmost node (which joins its left side segment instead), the number of
messages for forming a segment of size n takes only G(n + 1) + G(@) +i ~ 1.
however, this situation should be viewed as if the segment grow to length n + 1
and shrink back, and indeed the segment will eventually be captured by the
bigger one from the left.

A segment of size n — 1 is growing when the tail of the segment to its right
(that has the same orientation) decides to join him (instead of joining the winning
segment on the right). The cost of this scenario is G(n — 1) + G(1) + 1

We can bound G(n) by the maximum of the above results:

G =1
G(n) € max{[G(n ~ 1) + 1], 11:1(1'_@aa.<7(n{G(i) + G(n =) + min{i,n — i}, [G(1) + G(n — 1) + 1]}

271
which yields:
Gin) < 1?:':"<xn{G(z) + G(n —)+ min{i,n — i}}
Therefore, G(n) < F(n) u}

Theorem 3 The algorithm for a ring of size n terminates after no more than
n(1 + } log, n) messages are sent.

Proof:

By the definition of F', for all integers j < n, k < j and all 4;, > 0 such that
iy+iz+--+i; < n, it is clear that F(n) < F(i1)+ F(ia)+- - -+ F(i;). By lemma
2 and theorem 2 all the nodes belong to segments and are awakened. By the
observations above the algorithm stops after no more than F(n) = n(1+1 log, n)
messages are sent. 0

Time Complexity. For the purpose of time complexity analysis we consider
a model in which a message is delivered after at most one time unit. In the
basic algorithm, each node sends a message when it wakes up. I two nodes send
messages to each other on the same link more messages are sent. We shall call
such a situation a conflict. It is important to notice that a conflict can be created
only when a node wakes up. After a conflict is created, one of the nodes changes
its orientation and sends a message on its other link. This can lead to a conflict
on that link and we shall say that the conflict moves one hop. Otherwise, we say
that the conflict disappeared or resolved.

Lemma 8 In the basic orientation algorithm, delaying an incoming message,
cannol ceuse a message to be sent earlier from this node.

See [5] for the proof.

Lemma 9 If all nodes are awakened together, after k lime units there are no
conflicts belween segments that are both of size less than k.

Proof:
We assume in this proof that messages always travel exactly one time unit

since by lemma 8 it is the worst case. The proof by induction on k is immediate,
a

Corollary 2 If all nodes are awakened together, the algorithm terminates after
no more than n lime units.

A simple addition to the algorithm enable termination for a ring of size n
after no more than [32] time units. Every node that receives a message for
the first time (wakes up) sends immediately a wake-up message on the other
link (on both links). It is clear that after [2] time units all the processors are
awakened, and the extra cost is only 2n messages. By lemma 9 the algorithm
terminates after [22] time units. Our conjecture is that the algorithm has linear
time complexity even without this addition.

272

2.2 Pattern Searching

Consider the case of a ring of unknown number of indistinguishable processors
each of which has a local variable v; (i is only used for this discussion and is
not known to the processors) of some alphabet. We are interested in detecting a
pattern (a word} S that is defined on the v;s. We only consider algorithms that
terminate after all nodes have the correct result. Termination is achieved when
communication ceases (message termination).

An intuitive algorithm for the search will be as follows.

Upon wake-up or upon receiving the first message, set status to not_found, and
if your local variable v; is equal to the first letter in the searched word S , send
FOUND(1) to both your neighbors. Upon receipt of a FOUN D(j) message
(7 < |8]), if v; is equal to the j + 1-th letter of S, send FOUND(j 4+ 1) on the
other link. If j = |5| — 1 and your letter matches the last one of the searched
word, set status to found and send FOUN D{|S|) on both links. Upon receipt
of FOU N D(|S}) when your status is not.found, forward it to the other link and
set your status to found. Upon all other cases, no message or status change is
triggered.

'To show that the algorithin (message) terminates after a finite number of
messages are sent, consider the following.

Every node can initiate at most two FOUN D(1) messages. In addition every
node can send at most one FOU N D(j) message for 1 < j < |S| and at most
two FOU N D(}S|) messages. We can get, thus, an O(n - |S]) higher bound on
the number of messages that the algorithm will send for a ring of size n.
Correctness can be easily proved. '

Computing the functions OR or AND are simple cases of this algorithm as
the OR function is basically a search for the pattern ‘1’, and the AND function
a search for the pattern ‘0°.

The algorithm can be generalized to search for hierarchically ordered pat-
terns. An example for this is a search for winning poker sequences in a ring
where each processor holds a card. We would like first to search for a royal
flush, or if non found to search for a sequence of four identical cards, and if non
found a full-house sequence ete. The change in the algorithm is mainly to add
to the FOU N D message another parameter that holds the searched pattern i.d.
A search starts simultaneously for all patterns, but when a pattern is found no
more messages about patterns that are lower in the search hierarchy are for-
warded. The complexity of this algorithm is only h times the complexity of the
simple algorithm described before, where h is the hierarchy depth.

Search Algorithm for patterns of the form af*y (« # $*) are also possible.

3 Probabilistic Algorithms

3.1 Orientation

The orientation algorithm presented before, uses a deterministic function to
break symmetry among adjacent nodes. Consequently, it requires some prede-
fined consistent input for each pair of neighboring nodes. This action can be

273

replaced by probabilistic means that eliminate the need for such input values.
Upon a need to break symmetry among neighbors, each node will toss a fair coin
and send the result to the competing node. If they both get the same result, an-
other round of coin tossing is performed, until exactly one of the nodes gets
‘I’. The expected number of rounds for such a process is 3 o, i~ (3)' = 2, but
theoretically the process can be arbitrary long. Since the number of messages for
each coin tossing round is constant, the expected complexity for the probabilistic
orientation algorithm stays O(n - logn). Just like its deterministic counterpart
the probabilistic algorithm is partially correct. It message terminates with prob-
ability 1 and has bounded expected time and message (or bit) complexities.
Therefore, it conducts a message terminate Las-Vegas type algorithm.

3.2 Dividing an Even Size Ring to Pairs

We assume a bidirectional ring with unknown but even number of anonymous
processors. We give a maximum matching algorithm for the ring, i.e. after the

algorithm (message) terminates, every node of the ring is a member of exactly
one group of two adjacent nodes.

Algorithm Description The algorithm works in phases: In each phase a node
sends and receives a single message over both links. (We delay messages which
arrive out of phase until next phase starts, there can be at most one such out-
standing messages per node). Nodes are either single or married. Only single
nodes initiate the communication of the next phase. Two messages are used:
invile and reject. At the beginning of a phase (or upon wake-up) a single node
selects randomly one of its links, marks it as candidate, sends an invite mes-
sage over that link and sends a reject message over the other link. If it receives
an invite message over the candidate link, it marks it as a spouse and becomes
married. Otherwise, it waits until it has received a message over both links and
starts a new phase. A married node only forwards the messages it gets to the
opposite direction. In the case that both messages of the same phase are invite
the married node should swap its spouse, i.e. it removes the spouse marking
from one of the links and marks the other as spouse. The changing of the spouse
marking breaks the matches of all the couples between two single nodes and re-
divide these nodes and the two single nodes to neighboring couples. If all nodes
are married after any phase completes, the algorithm terminates as no processor
initiates a new phase.

Complexity At each phase a single node will become married with probability
1/2. Therefore, On the average half of the single nodes become married after
each phase, so the average number of phases is logarithmic. Each phase requires
exactly one message over any link in each direction, which gives us a total of
O(n -log n) messages. Since we have only two messages types (invite and reject),
the bit complexity is also O(n - logn).

274
4 Impossibility Results

Let f:X* — T be a function computed on anoenymous rings defined over some
alphabet X. f is symmetric if for every string s € Z* and for every natural k,
f(s) = f(s*). Otherwise f is nonsymmeiric.

In [8] Itai and Rodeh prove the impossibility of calculating the ring size
when the processors are anonymous, and the algorithm is partially correct. In

" the sequel we shall extend this proof in two directions, First we prove that the
ring size cannot be calculated by algorithms that have bounded bit complexity
and are partially correct with probability 1, where in [8] algorithms that might
end with an error with probability 0 were not considered. Second we generalize
this to all noensymmetric functions. !

Examples for nonsymmetric functions are leader election, XOR and comput-
ing the ring’s size. For XOR f(5) # f(s*) whenever s contains an odd number
of 1s and & 1s even. For computing the ring size f(s) never equals f(s*) if k > 1.
For leader election there is no meaning for the input and the function return
value should be a bit that tells each processor whether it is the leader, it is clear
that the vector f(s*) never equals the concatenation of the k vectors of f(s).

The proof is constructed for a synchronous algorithm and thus holds for
asynchronous algorithms as well. We first examine a ring of n processors
(p1, p2, ...,pn) with inputs s = (81, 82, ...,s.). (The processors are anony-
mous and the markings are only for our convenience.) We select an execution R
of the algorithm on that ring that has a positive probability to terminate after
a finite number of bits were sent, and yields £(s) = (fi(s), fa(8), ..., fu(8))
as output vector. We prove that execution with positive probablhty must ex-
ist. Then we look at a system of & such rings with the same inputs and prove
that the probability for R to be executed simultaneously on all the rings is still
positive. In the final step, we form a single ring of size kn, by cutting all the
rings at the same place, and reconnecting them to a ring of kn processors. Since
the processors are anonymous there is no way for a processor to tell if it is in
the system of k rings that each one of them has R executed at, or whether it
i in a ring of kn nodes that has k ‘copies’ of R executed at its k sections. The
probability of getting £*(s) = (f(s), £(s), ..., £(8)) in the concatenated ring is
thus positive, too, and since £*(s) # f(s*) we conclude our claim.

Theorem 4 There is no algorithm for computing o nonsymmetric function in
a ring of unknown number of anonymous processors thai is partially correct with
probabilily 1 and ils average bit complezily is bounded.

Proof:

Let A be such an algorithm for computing the function f in aring of unknown
number of anonymous processors, and let E be the average number of bits sent
by the algorithm. We examine a ring with n processors (p1, p2, ...,pn) with
inputs s = (81, 83, ...,8n) Let £(8) = (f1(s), f2(s8), ..., fa(5)) be the output
vector where f;(s) is the output value that processor p; holds when the algorithm
(message) terminates for inputs s. Select s and k s.t. £¥(s) # £(s*). We select

275

an execution R of positive probability that terminates after a finite number of
bits were sent, and yields £(s) = (fi(s), fa(s), ..., fa(s)) as output vector. We
shall show that such R with probability greater then zero exists. By definition
E =372, ip(i), where p(i) is the probability that A terminates-after i bits were
sent,

00 o0
E2 3 ipli) 228 37 p(i) (1)
i=2E+1 i=2E+1
We get from eq. 1 that 3302, 5., p(i) < £, and thus 122 p(i) > 1. We can

deduce that at least one execution that uses less than 2F bits, has a positive
probability ¢. '

Examine a system of k rings each of n nodes and input vector s. All the rings
are stochasticly independent. Since the probability space of this system is the
Cartesian product of k identical probability spaces of the ring discussed before,
the probability for R to be executed simultaneously on all the rings is ¢*.

Now let cut all the above rings in the same place, say between pro-
cessor p; and processor p;y1. Then, all the strips are connected to a
ring of kn processors such that every processor p; is connected to piyi:
(p}-{-ls veey pjn p%) vy p‘lipig'{-l! AKES pg!pia-}-l: v 1pf) Since the processors are
anonymous there is no way for a processor to tell if it is in the system of &
rings that each one of them has R executed at, or whether it is in a ring of kn
nodes that has & ‘copies’ of R executed at its k sections. The probability space
of the concatenated ring and the k ring system is identical, All the events in
the probability space that cause simultaneous execution in the k ring system
cause also simultaneous execution of k copies of R at the concatenated ring and
yields £¥(s) = (£(s), £(s), ..., £(s)) as output. So the probability to get £*(s)
as output in the concatenated ring is at least *, |

A direct corollary of this theorem is that deterministic algorithms for non-
symmetric functions do not exist, ‘

The rationale for our restriction to algorithms with bounded average bit
complexity can be demonstrated by the following simple algorithm. Each node
select a real number in the range (0..1). Since the probability for two nodes to
choose the same real number is zero the ring’s nodes own a unique identities
with probability 1, a model that was studied in depth in the literature. Leader
election can be easily performed with O(nlogn) messages but here each one of
them carry an infinite number of bits.

5 Concluding Remarks

We present here for the first time algorithms for anonymous rings of unknown
size that always (or with probability 1) converge to the the right answer and
have bounded (average) communication and time costs. All of our deterministic
algorithms: orientation and general pattern searching which include computing
OR and AND, have the same complexities as the corresponding algorithms in
models where the ring size is known. Our probabilistic algorithm for dividing

276

an even size ring to pairs can be generalized to dividing a ring of size km to m
groups of k neighboring nodes.

Our impossibility result shows that in general such an algorithm does not
exist for arbitrary functions since most functions are non-symmetric. Some prob-
lems are more difficult to be presented in terms of functions. However the impos-
sibility result still holds for such problems if they have a non-symmetric behavior.
Such examples are: dividing a ring of size n # km to a maximal number of groups
of k neighboring nodes; evaluating the size of the longest sequence of consecutive
‘1”, where in the case that all inputs are ‘1’ this translates into finding the ring
size (which was also proved in [g]).

References

1. K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Randomized function
evaluation on a ring. In J. van Leeuwen, editor, Proceedings, 2nd International
Workshop on Distributed Algorithms, pages 324-331, July 1987. Lecture Notes in
Computer Science, Vol. 312.

2. K. Abrahamson, A. Adler, L. ngham, and D. Klrkpatnck Optimal algorithms
for probabilistic solitude detection on anonymous rings. Technical report TR 90-3,
University of British Celumbia, 1990,

3. H. Attiya and M. Snir. Better computing on the anonymous ring. Journal of
Algorithms, 12(2):204-238, June 1991,

4. H. Attiya, M. Snir, and M. K. Warmuth. Computing on the anonymous ring.
Journal of the ACM, 35(4):845-875, 1988,

5. I. Cidon and Y. Shavitt. Message terminate algorithms for rings of unknown size.
EE Pub. 793, Technion - Israel Institute of Technology, Dept. of Electrical Engi-
neering, Haifa 32000, [ISRAEL, August 1991.

6. D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithmas.
Birkhauser, second edition, 1982.

7. A. Israeli and M. Jalfon. Uniform self stabilizing ring orientation. Information
and Computation, 1991. to be published.

8. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In Proceedings
of the 22nd annual IEEE symp. of fundations of computer science (FOCS), pages
150-158, 1981,

9. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information
and Computation, 88(1), September 1990.

10. 8. Moran and M. K. Warmuth. Gap theorms for distributed computation. In
Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 141-150, 1986.

11. J. K. Pachl. A lower bound for probabilistic distributed algorithms. Journal of
Algorithms, 8:53-65, 1987,

12, B. Schieber and M. Snir. Calling names on nameless networks. In Proceedings
of the Eighth Annual ACM Symposium on Principles of Distributed Computing
{PODC), pages 319--328, 1989,

Distributed Resource Allocation Algorithms
(Extended Abstract)

Judit Bar-Ilan * David Peleg

1 Introduction

One of the major constraints of a multi-processing system is that a resource can
usually be used by only one process at a time. This constraint introduces the problem
of scheduling jobs with conflicting resource requirements in a distributed system. The
problem (sometimes known as the dining/drinking philosophers problem) has received
considerable attention in the last two decades (see [Dij71, RL81, Lyn81, CM84, SP88,
AS90)).

In this paper we consider designing algorithms with low response time for resource
allocation. The general framework we consider is a point-to-point message passing
network of processors. Qur main focus is on classifying the possible models according
to several parameters, and looking for solutions that are appropriate (and efficient) in
each of these submodels.

1.1 The Problem

A distributed system is a collection of processors connected through communication
channels. We denote the underlying communication graph by . It is assumed that
the processors in the system occasionally create jobs that need to be executed by the
system. In order to execute its task, each job needs certain resources. If two jobs need
the same resource they cannot be executed concurrently. Therefore it is necessary
to find an efficient way to schedule the execution of these jobs so as to minimize the
response time. In this model, the problem of resource allocation is sometimes referred
to as the dining/drinking philosophers problem,

The conflicts caused by simultaneous demands are represented formally via a struc-
ture called the conflict graph, C. The nodes of the graph are jobs, and there is an edge
between two nodes if the corresponding jobs need a common resource. The graph is
dynamic: once a job is created we add a node to the graph, and once it terminates its
execution, the corresponding node is deleted from the graph.

*The Open University of Israel, Tel-Aviv 61392, Israel. This work was carried out while the author
was with the Department of Applied Mathematics and Computer Science, The Weizmann Institute
of Science.)

' Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot
76100, Israel. Supported in part by a Walter and Elise Haas Career Development Award and by a
grant from the Basic Research Foundation. '

278

We make the following assumptions on the problem, following [AS90]. We assume
that each job has a unique ID. In most of our algorithms we allow only one job
per processor at a time, in which case the job ID can simply be the processor’s ID.
We assume that at any moment, there exist at most §; jobs conflicting with job j.
We denote by & the maximum number of conflicting jobs with any job j, which is
also the maximum degree in the dynamic graph C. We denote by u the maximum
execution time of any job, and by p; the maximum execution time of any neighbor
of j (including j itself) at any time in the conflict graph, C. By » we denote the
maximum time required for a message sent from one processor to the other to be
prepared, transmitted and received. The response time for job j is the total time
elapsing from the creation of the job to the time it begins its execution.

The execution of the jobs is governed by an algorithm called the scheduler. Our
aim is to devise algorithms for the distributed scheduler with low response time. When
a new job is created, a schedule(j) message is sent to the scheduler, It contains the
unique ID of the job, and a set compete(f), which is a list of the ID’s of the existing jobs
that conflict with j (that is, the neighbors of j in C). (In [AS90} it is only required that
if 7 and k conflict, and the time periods of their existence in the system overlaps, then
either k € compete(j) or j € compete(k). Several of our algorithms work under this
weaker assumption as well.) When a job leaves execution it sends a done(j) message
to the scheduler. We assume that no job terminates before the end of its execution
and no job is executed forever.

The scheduler informs a job j to start its execution by sending it an ezecute(y)
message. The scheduler sends exactly one execute(j) message for each job j (guar-
anteeing a liveness property for the system), and if jobs 7 and & conflict then either
the done(7) message precedes the execute(k} message or the done(k) message precedes
the erecute(y) message (thus guaranteeing a safety property). With these notations
we can rephrase the definition of response time as the time from the moment the
schedule(j) message was sent by the originator of job j to the moment the ezecute(s)
message was received by the job. We say that a job is active between the time it sends
the schedule message and the time it receives the execute message. .

1.2 Model Classification

QOur results are presented in this abstract under the assumption that we work in a
gynchronous environment with a complete communication graph ¢. Communication
is synchronous if all the processers work at the same rate and a message sent from
processor p connected to processor ¢ at time ¢ arrives at time ¢ 4+ 1.

We classify the model according to two independent parameters. Our first param-
eter concerns the local computational requirements allowed for the resource allocation
algorithm at hand. An algorithm is bounded if the amount of local computation it
requires at a processor attempting to execute job j in a single step is bounded by
O(8;) (intuitively allowing it to exchange one round of communication with its com-
petitors). We say that the model is bounded if it allows only bounded algorithms.
Otherwise (if arbitrary computations are allowed in a single step) the model is said
to be unbounded. Qur second parameter concerns the question whether the execution
time of a job is known at the time it is created.

279

This classification gives rise to four different models, which can be described for-
mally by associating with each model two attributes, corresponding to the above pa-
rameters. The first attribute is / when the model is computationally unbounded, and
B otherwise. The second attribute gets the value I if the length of the job execution
is known at the time the job is created, and F otherwise.

In this paper we are concerned with the response time of jobs, as defined above,
with different algorithms under these four models. Bounds on the time are expressed
in terms of the maximum time needed for 2 message to be prepared, sent and received,
v, and in terms of the maximum time needed for the execution of a job, g- (In the
restricted model of synchronous communication over a complete network, » can be
set to 1.) We say that B > U/ and F > K, where > stands for “stronger”, since
any algorithm that works in a stronger model trivially works in the respective weaker
model with the same time bound.

1.3 Results

In the following sections we suggest a number of different algorithms for the sched-
uler, and assess their appropriateness to the different models under consideration. In
particular, we improve on the best known deterministic algorithm ([AS90]). In the
(8, F) model, the algorithm of {AS90] achieves a response time of O(5, + é%vlog Z),
where the ID’s of the jobs are in the range {1,2,..., Z}. A randomized algorithm with
response time O(6;¢ + 6}v) is also presented in [AS90]. Here we present algorithms
that achieve O(8;4 + é;1 log Z) in the deterministic case and O(8; + §;v) in the ran-
domized case. Qur results are summarized in Table 1. Notice that the response time
of any algorithm cannot be better that Q(§;u; + v).

Our algorithms can also be extended to the asynchronous model with an arbitrary
communication graph G. In particular, the central algorithm of Section 2 and the
interval algorithm of Section 4 apply to the more general model without change. Our
other algorithms can be adapted to the asynchronous, arbitrary topology model by
an appropriate use of an @ or § synchronizer (see [Awe85]). The transformation
to an asynchronous mode of communication (while maintaining the assumption of a
complete communication network) entails no changes in asymptotic complexity. (Since
the problem concerns a distributed operating system designed to work continuously
and process an infinite stream of incoming jobs, we ignore the issue of set-up costs in
this abstract.)

When generalizing our setting to that of an arbitrary communication network, it
is necessary to discuss another significant issue, namely, the relationship between the
topology of the conflict graph € and that of the underlying communication network .
In particular, it is necessary to specify whether C is assumed to be a subgraph of the
graph G (namely, every two competing processors must be neighbors in the network},
and furthermore, whether it is assumed that a job may require resources located only
at the nodes adjacent to its originating node.

It seems that in many natural situations, both assumptions cannot be made. That
is, processors may require resources located at distant sites, and may compete over
these resources with other distant processors. This implies that the diameter of the
network G is an inherent lower bound on the probjem, since some sort of commu-
nication between processes and resources, as well as among the competing processes

280

[Model | Complexity | Algorithm]
(U, K) Olb;p; +v) central
06515 +) interval
(U, F) O(bp; +v) central
(B, K) O(;p + §;1) randomized
O +v) randomized interval
O(bjp + 8;0) randomized synchronized queue
O(d;u + b;vlog Z) synchronized queue
(B, F) O + 6;v) randomized
O8;pn + 8;0) randomized synchronized queue
O(b;jp+ §;vlog Z) synchronized queue

Figure 1: Time complexity in different models

themselves, is essential. Indeed, our synchronizer-based solutions introduce this factor
into the complexity. Specifically, the complexity of all of cur solutions remains as
stated in this abstract, but for setting the parameter v (measuring the maximum time
needed for message transmission in the network) to be the network’s diameter.

If we do make the assumptions restricting resource requests and conflict edges to
neighboring nodes in &, then some of our solutions, combined with an « synchronizer,
still work properly, with only O(1) factor increase in response time {again, ignoring
set-up time for the synchronizer). Specifically, the randomized algorithm of Section
3 still meets the bound of O(6;(i + v)) on the expected response time. Recently,
an asynchronous randomized algorithm using no synchronizer, with O(6(x + v) logn)
expected response time, was presented in [ACS92] for this model (with the subgraph
assumption),

2 Centralized and Global Algorithms
2.1 The Central Algorithm

The central algorithm is based on using a central processor r in the network. This
processor is notified of every change in the system. When a new job is created, it
registers with r and waits to be executed until it receives an execute(j) message from
processor r. Processor r gives each new job j a number, called the queue-number and
denoted p(j). The central processor has complete information of the system, including
the communication graph G, the dynamic conflict graph C, the current queue-number
of each job, and the list of currently executing jobs.

The center implements the scheduler in a straightforward way. The initial queue-
number of the job decreases until it reaches 0. Then the ezecute(j) message is sent to
J. Once j completes execution, it sends the done(j) message to r.

Since the algorithm is centralized, concurrent arrivals can be treated sequentially
by r. We assume compete() contains the list of all the currently existing conflicting
jobs. The queue-number chosen for j is the minimal unoccupied position by the

281

For each k € compete(j} do:
Mark p(k) and p(k) — 1.
Set ¢(4) := min{unmarked number}.

Figure 2: Queue numbering

On receiving a schedule(f) message do:

L. Set p(7) := g(j)

2. For each k € compete(j) do:

(a) If p(k) < p(j) and Al € compete(j) s.t p(k) < p({) < p(J)
then add the edge (&, j) to C'

(b) If Al s.t. p(k) < p(j) < p(I) and there is an edge (k,{) in '
then delete (k,{) and add (§,{) to ¢’

On receiving a done(j) message do:

1. Delete j and all the edges pointing to it from C’.

2. For g :=1 to the maximum queue-number in the graph do:
If (Vi s.t. (4, k) is an edge in C', p(i) < p(k) — 1) then p(k) := ¢ —1

3. Send an ezecute(k) message to each k with p{k) = 0.

Figure 3: The central algorithm: protocol for the central processor

jobs conflicting with j (see Figure 2}, Following [AS90] progress is guaranteed by
disqualifying also the positions.preceding the actual queue-number of these jobs. As
explained later this ensures that the jobs are not stuck forever in their position. Notice
that p(y) < 26;.

The central processor r stores a dynamic graph €', which is a directed version of the
conflict graph. After assigning the initial queue-number to j, r adds it to the conflict
graph. Specifically, it adds an edge {k,j) for every k that conflicts with § such that
p(k) < p(j) and there is no job { that conflicts j with p(k) < p(!} < p(j). When the
edge (k,7) is added, every edge (k,{} (for | > j) is deleted and instead an edge (7,1}
is added to C’. When r receives a done(y) message, it updates the queue-numbers. In
particular, it decreases p{k) by one iff p(¢) < p(k) — 2 for every ¢ such that {{, k) is an
edge in C'. If p(k) = 0 then r sends k an erecute(k) message. The algorithm is given
in Figure 3. It calls function g defined in Figure 2.

Let us now explain the role of leaving an empty space in front of every occupied
slot p(k) in the queue. If k conflicts with more than one other job, say with { and
7. then both jobs must have a queue-number strictly less than p(k) ~ 1 in order to

282

decrease p(k) by one. Assume p(i) = p(k) — 2, but p(j) = p(k) — 1. In this case we
cannot decrease p(k). Now suppose a new job [, conllicting with ¢ and &, enters the
system. Had we not disqualified the position before p(k) (see Figure 2) we could have
assigned p(k) — 1 to the new job {. Now even if p(j) is decreased, p(k) will not be
decreased, because the previous queue-number is occupied by {. In the meantime a
job conflicting with § and & could occupy p(k) — 1, and so on, and the job &k could be
stuck forever with p(k) — 1. It is easy to see that this is not the case when the position
before the current queue-number of a conflicting job cannot be assigned to a new job
entering the system. No job can suddenly “jump” immediately in front of any existing
job k, since if ¢ and & are conflicting and are already assigned queue-numbers, and
if p(¢) < p(k), this inequality continues to hold until ¢ enters execution. Notice that
with this queue-numbering, every u 4+ v time units p(j) decreases by 1 and j advances
towards execution. Formal analysis is deferred to the full paper.

2.2 Model Classification

In the (U, F') model, the central processor » can assign a queue-number to all the new
jobs and update all the existing ones in a single time unit. Every job interacts with
the center exactly three times, namely, when it is created, when it gets the exzecute
message and when it sends the done message to the center. Therefore, in this model
the response time will be O(§;1 + 8;v).

Let us examine the local computation of 7. Assume each processor handles a single
job at a time, and there are n processors. Then r must give a queue-number to
each job, and since job entries are dealt with sequentially, this part can take O(é;n).
Updating with the proper data structure will take O{8n). Notice that the fixed vector
or linked list data structures are inappropriate. In the full paper we shall discuss
efficient implementations of the appropriate data structure.

The main disadvantage of the central algorithm is that r is a bottleneck to the
performance of the entire system. We may consider a global variant of this algorithm,
in which every processor has a copy of 7’s program. When a new job enters, it broad-
casts its entrance. Every processor updates the conflict graph, concurrent entries are
dealt with sequentially according to the ID’s (to ensure that all the processors choose
the same queue-number for the given job). When a job’s gueue-number reaches 0,
the processor to which it belongs, starts to execute it. Before the job terminates, it
broadcasts a done message to the network. This solution is more expensive in terms
of communication complexity, since messages have to be broadcast, but there is no
single processor that acts as a bottleneck. '

3 Randomized Scheduling

The central algorithm achieves an almost optimal response time of O(8;1 + v), but
assumes the unbounded local computation model. The algorithm described next works
in the bounded local computation model quite efficiently, but needs randomization and
the almost optimal response time is only expected.

283

¢ Election subphase:

1. Set coin(f) to 1 with probability % and to 0 otherwise.
2. Send (eoin(f),8;) to Yk € compete(y).
3. If 3k € compete(y) s.t (coin(k) = 1} and (6 = 4;) then coin(j) = 0.

¢ Execution subphase:

1. If coin(j) = 1 then enter execution.

Figure 4: The randomized algorithm: protocol for an active J

3.1 The Randomized Algorithm

The randomized algorithm proceeds in phases, with each phase composed of two sub-
phases, the execution subphase and the election subpha,se In the election subphase,
each active job flips a random coin with probability 1~ o for turning 1. The job elects
itself for execution in the execution subphase iff its coin turned 1 and there is no
conflicting job ¢ with & > §; that also flipped 1. (Notice, that ¢ had smaller chance
of flipping 1, which is why collisions should be resolved in its favor.) The procedure
appears in Figure 4.

Note that the phases are essential, otherwise it is possible that a job waits forever:
each time it flips 1, some of its neighbors in the conflict graph are being executed
and it cannot start its execution. In the synchronous case, the phases can be imposed
simply by fixing their length {with the execution subphase requiring g time units).
For the asynchronous case, the phases can be imposed by using a synchronization step
between the execution subphase and the election subphase of the next phase. This
synchronization step can be implemented as follows. Each resource indicates the end
of its execution subpha.se by an “end phase” signal. These signals are collected from
‘all resources via a “convergecast” process over a spanning tree of the network G. The
root of the tree then broadcast a “start phase” signal throughout the network.

3.2 Analysis and Model Classification

Next we bound the expected response time. Let us denote by Ey the event that j has
drawn 1, and no neighbor of j with degree higher than §; elected itself. The expected
number of phases j has to wait before entering execution is bounded by 4(§; + 1)y,
since

Pr{E} = — (1-)
6 +1 kGF(J:v’[)—.[Skzﬁj S t1
1 1 1

> 1~ b —

- §j+l(5j+1) 4(6;+1)

This algorithm works in the (B, F) model with expected response time O(6;4+8;v).
Using the Chernoff bound, it follows that a response time of O(é log i) rounds can be

284

On arrival of a new job do:
1. Let the current time be ¢,.
2. Mark the time interval [tg, ¢y + v].
3. For each k € compete(s) mark Tk,

4. T; := min{unmarked time interval T | |[T| > j’s execution time}.

5. Send j a message containing £,

Figure 5: The interval algorithm: protocol for the central processor

garanteed with probability at least 1 — plord<p<l.

4 Interval Scheduling

All the algorithms discussed previously work in models where the execution time of
a job was not necessarily known at the time of the jobs creation. Now we consider
models where the execution time is known at the time of the jobs creation.

4.1 The Interval Algorithm

Our first algorithm in this model is the interval algorithm. This is a centralized
algorithm where the center r makes use of the execution time of the jobs. Here,
instead of assigning a queue-number to each new job, the center assigns a time interval
sufficient for the execution of the job. We denote by T; = {t{i} ,, 4] the time interval
in which the job j is executed (we assume the existence of a global clock, and denote
the current time by #,. '

The center takes care of the jobs sequentially. When a new job arrives, the center
assigns it the first sufficiently long time intervdl, T, in such a way that if j and &
conflict, then T; N T = 0. After assigning j a time interval, the center sends it a
message containing t43) . - this is the execute(j) message of the general model. The
algorithm is depicted in Figure 5.

4.2 Analysis and Model Classification

When the execution time is known at the time of the creation of the job the response
time is a function of g; (the maximum execution time of § and the jobs conflicting
with it) instead of x (the maximum execution time of a job in the system). It is easy
to create scenarios where there can be a great difference between the two parameters.

Next we analyze the response time of the algorithm. The maximum length of time
intervals occupied by conflicting jobs is §;4;, and the maximum length of free intervals
in the initial interval not long enough for j is also &;u;. Therefore §'s execution will
commence after at most 26;4; + v time units from the moment the center assigned

285

it a time interval (as v time units are needed for the message containing the starting
time of the job to arrive). This algorithm works in the (U, K')-model with response
time O(6;u; + v). The time required to assign a job a time interval is extensive
{i.e., polynomial in the number of jobs}, hence the restriction to the unbounded local
computation model.

5 Randomized Interval Scheduling

As noted earlier, the interval algorithm needs extensive local computation. Qur next
algorithm works in the bounded local computation model, when execution times are
known. We also assume either the existence of a global clock, or at least that pulses
are of identical duration (in real time), so jobs lengths can be specified in terms of
number of pulses. (Applying this algorithm in the asynchronous case is possible, but
requires some complications in the algorithm, which are deferred to the full paper.)

5.1 The Randomized Interval Algorithm

When a new job j enters the system at time ¢, it sets t = t4-3v and subdivides the time
interval [to, to + 46;4;] into 48; subintervals of length p;. The job randomly chooses
one of the subintervals, and sends its choice to every other job in its compete set. If
it hears no objections after 2v time units, it chooses this subinterval as the interval
in which it executes. At time ¢y it starts execution. 'If any competing job objects,
then j abandons this subinterval, and starts the whole process again (updating). In
each attempt, 77s choice of the subinterval is random and independent of the previous
choices.

During the period the job is active, it might receive messages from conflicting jobs.
If job k tries to choose a time interval that intersects the interval j chose (or is currently
trying to choose), then j sends an objection to k. The algorithm is given in Figure 6.

5.2 Analysis and Model Classification

Let us first analyze the algorithm. Every time j tries to choose a subinterval, there
are at most §; jobs conflicting with j. Each such job occupies (or tries to occupy)
an interval of length at most u;. Each such occupied interval can intersect with at
most two subintervals of j. Hence j’s interval contains at least 26; subintervals whose
selection by j will raise no objections. Therefore with probability 1/2, job j will
succeed at the first trial. Thus the expected number of trials is 2. The expected
response time in the (B, K'}-model will be O(8;u; + v).

6 The Awerbuch-Saks Algorithm Revisited

The goal of this section is to explain the main difficulties that lead to the complexity
of O(6;1+ 63v) of the randomized algorithm of [AS90}, and show how a simple modifi-
cation of their randomized algorithm yields the improved complexity of O(6;u + §;v).
Then we present a deterministic algorithm with a similar improvement in the com-
plexity.

286

e Entering phase:

1. Set £y := current time + 3v; set T;=0.

bo

Divide the interval [ty, to+46; 4] into 46; nonintersecting consecutive subin-
tervals of length gz s = fto + (i = 1)y, to + ip]

Choose randomly and uniformly ¢ € [1,...,46;].
Set Ttemp(j) 1= 3.

Send a message to each k € compete() requesting to occupy Teemp(s).

S

If all responses are “OI{” then set Tii=s;
and at time to + ({ — 1)g; enter execution.
Else goto 1

¢ Responses:
On receiving a message from & trying to occupy Tiemplk) do:
If Themp(s) N Tiemp(k) # @ then send an objection to k.
Else send “QK”.

Figure 6: The randomized interval algorithm: protocol for j

6.1 The Randomized Synchronized Queue Algorithm

Let us start by presenting a randomized algorithm, which is a variant of [AS90]. The
main differences between the original algorithm and ours are in the entry-protocol and
in our assumption that the system is synchronized: we assume that every v time units
each job gets a pulse, allowing it to send the next batch of new messages. Jobs can
send messages only on pulses. This is easily achieved in a synchronous system by a
clock, but can also be achieved in an asynchronous system using a synchronizer as
discussed earlier. : .

First, let us give an outline of our algorithm, Each new job 7, entering the system
chooses a queue-number, ¢, in such a way that no two conflicting jobs have the same
queue-number. After entering the queue, the job decreases its number by one, each
time it is certain that no other conflicting job has that number. It notifies all the other
conflicting jobs of its new queve-number. Once a job has number 0, it enters execution,
When leaving execution, it sends a done message to all the jobs in its compete set and
exits the system. The set of conflicting jobs is constantly updated. Each job decreases
its queue-number in a deterministic fashion. We prove that every u + v time a job
decreases its queue-number by one. Therefore, the time the job spends in the queue
is O(g(p + v)), thus it is important to pick a small injtial queue-number, We give an
algorithm that picks an initial queue number, ¢, such that q = O(4;).

In this algorithm, the process of picking the initial queue-number uses random-
ization. A new job randomly chooses a number ¢ in the range [0,66,] and sends this
number to all the jobs in its compete-set. If this ¢ is the current queue-number of a
job, or one less than the queue-number or one more, then it objects to this choice, and
the new job has to try again. It chooses ¢ only if no existing conflicting job objects

287

to this choice. It also takes into account the choices of the other new conflicting jobs
that try to enter. It is easy to see that each trial has probability of success of at least
1/2. The choice is such, that both each previously existing job that a new job entered
in front of it, and each new job can decrease its queue number by at least one without
being delayed by another job. In such a way we leave enough time for the jobs to
recover from the “shock” of a new entry.

The randomized synchronized queue protocol has two interleaving parts, the entry
protocol and the queue protocol. They are given in Figures 7 and 8.

We made one major and two minor changes in the [AS90] algorithm. The major
change is that a new job chooses a position, such that not only that position, but
also the position below it is unoccupied. A position, as in [AS90], is occupied if
a job has that number or it is one below a currently existing queue-number. The
first minor change is that in the {[AS90] randomized entry-protocol, a new job first
collects information on the queue-numbers of the existing conflicting jobs, and chooses
randomly one of the unoccupied places (where it considers the place directly in front
of an existing job also occupied). It turns out that the information collection phase is
unnecessary. The second change is that in the queue protocol, each job advances its
position when no conflicting job is directly ahead of it, while in [AS90], each time a
job asks for permission to decrease its queue-number,

In order to explain our solution, it is instrumental to first understand the source
of the difficulty in the current algorithm of {AS90}]. In order for the algorithm to be
as efficient as possible, it is desired that each task advances its position in the queue
once every u -+ v time inits. In order for that to happen, it is required that the flow of
information on task termination in the system is fully pipelined. The problem occurs
when new tasks enter the queue in front of old ones, and form long, and as of yet
unpipelined, queues. To demonstrate this point, consider a job j currently in position
k in the queue, and suppose that new tasks ji,j2,..., k-2 now enter the queue, and
form a chain by taking the numbers 1,2,..., 4 ~ 2 respectively, all at the same time.
Task j is now allowed to advance its number to k — 1, but then it must wait for Jr-2
to proceed. This may require x + (k — 2)v time units. Just then another new queue
may form in the same fashion to postpone §'s progress to & — 3, and so on, and the
total delay can clearly accumulate to O(6u + §?v) time.

Qur correction is therefore geared at preventing such delays from happening. It
can be illustrated by the following analogy. Consider the line of cars formed in front
of a red traffic-light. Once the light changes to green, the cars start moving one by
one. However, each car in the line is delayed until the car right in front of it has
started moving. Suppose, now, that when forming the line, each car leaves a space
of one car length between itself and the car preceding it in the line. Then (assuming
synchronicity) immediately when the light changes to green, all cars can start moving
at once. The cost is limited to doubling the length of the line.

Our solution is thus to require each task taking a number & in the queune to ensure
that not only does it not disturb tasks following it, but it also has some space in front
of it. Namely, it lias to ensure that both & ~ 1 and & + 1 are free of competing tasks.
This guarantees that a newly formed queue will enable each task to proceed for a
while until the queue “crowds”. For instance, in the example above, the new tasks
J11J2, - Je-2 may take the numbers 2,4,...,2(k — 2) respectively.

288

On job j entering the system:

1. Set X «— compete(j}), D « B, U +— Q.

[

. Randomly select ¢ € [0,68;]. Let temp.p := q.

3. Send a message (request, j,q) to every k € X, and collect responses:
On receiving (agree, j’, ¢', decided) from j': set D « D U {5'}.
On receiving {agree, j', temp(q’), attempting) from j': set U « U U {5'}.
On receiving done(§') from j: set X — X\ {'}.
On receiving (object, j') from j* do:
set X « XUUUD, De—§, U §.
send (abandon, j, ¢) to every job in X.
goto 1

4. After collecting answers from every job in X (all responses are agree) do:

(a) Send (chosen,j,q) to every k € X.

(b) Set p(j) < ¢.

(c) Partition D into before(j) and after(j): for every response
(agree,j’, ¢, decided), if ¢’ < ¢ then set j' € before(j) and if ¢ > ¢ then
set j' € after(s).

(d) Switch to the ‘Queue Protocol’.

On job j with (p(j) = q) or (temp_p = ¢ and no objections received so far) receiving
a (request, k, ¢') message:

1. Add k to U

2. If {¢~1,¢IN{g—1,¢} = ® then do:
if decided on ¢ then send (agree, j, q, decided) to k,
else send (agree, J, g, allempting).
Else send (object, 7).

On job 7 receiving a (chbsen,k, ¢') message:
Transfer k into D (if j is still in the trial phase) or to after(j) or before(s)
according to &’s chosen number,

Figure 7: The entry protocol in the randomized synchronized queue algorithm

289

(* X is partitioned into be fore(j) and after(j) *)

o If j knows that Yk € before(j) \ {{ : { sent out its (agree) message when its
queue-number is already p(7)}U {{: ! € U s.t when ! sends its {(chosen) message
it will join before(;)}, p(k) # (7).

L. Set p(j) — p(j) - I
Send (decreased, j,p(j) — 1) to every k € after(j)UU.

2. I p(j) = 0 then start execution;
when leaving execution send (done, j) to every k € after(j)UU.

3. When receiving a message (done, k), remove k from (be fore, 7).

4. Goto o {with updated sets be fore(j) and after(s).

Figure 8: The queue protocol in the randomized synchronized queue algorithm

Note that this “spaced” queue may “crowd” in a while, when g > v. In particular,
by the time j; has advanced : times, from number 2¢ to ¢, the queue in front of it has
crowded completely, assuming p is large enough. However, by that time, i» time units
have elapsed from the time j; has entered the queue, and this turns out to be precisely
the time required in order for the queue to regain the “pipelining” property, i.e., by
now, the queue segment ahead of j; is fully pipelined.

6.2 Analysis and Model Classification

Let us now anpalyze the randomized synchronized queue algorithm.

Claim 6.1 In each trial job j has probability at least 1/2 in succeeding to choose an
initial queue-number.

Proof: Job j chooses randomly from 68; positions. For at most 38; choices j may
hear objections (specifically if it tries to occupy a position in front of, behind or at
the current place of a job). Therefore each attempt has probability at least 1/2 of
succeeding. 1l

Claim 6.2 The entry phase takes expected Ov) time.
Assume that [£] = [

Lemma 6.3 Let p;(j) be j's queve-number at pulse number i. Then for every j and
for every pulse ¢,
Pirtaa(7) S pij) — L.

Proof: The proof of the lemma is by induction on the queue-number. The induction
claim is as follows:

Ay o YY) pilf) S ¢ = pinina() S g -1

290

We assume that ¢ is the first pulse in which j’s queue-number is ¢ + 1, that is, at
pulse ¢ — 1 its queue-number was still ¢4 2 or j has sent the (chosen, j, ¢ + 1) message
at pulse 1.

If ¢ =1 at pulse ¢, then at pulse i + ! all jobs preceding j in the queue will leave
execution, and at pulse (¢ 4) + 1, job j will be notified, decrease its quene-number
and start execution.

Next we assume that A, is true, and prove Ag4y:

First we take care of the case where job j already sent its (chosen) message before or
at pulse i — 1. Because of synchronicity, if at time ¢ the job j has queue-number g + 1,
then there is no job {other than possibly ;) that conflicts with ; and was present in
the system (i.e., already chose queue-numbers) at pulse i — 1, with queue-number ¢+ 1
after pulse ¢ — 1, That is, there is no job that decreased its queue-number from g + 1
to q after pulse 1 — 1 and before pulse 7 and its message got through to j before the
beginning of pulse ¢. {This is why we need the pulses for our algorithm to work).
- There are four kinds of jobs.

1. Jobs that were in the system at pulse ¢ —], with queue-number different from ¢.
These jobs do not delay j in the current phase.

2. Jobs j' that were in the system at time ¢ — 1 with queue-number q. By applying
the induction assumption to them, we get that p;_y1411(j'} € ¢ — 1, therefore at
pulse ({ =1 +14+1)4+1 =i+ !+ 1 their message arrives at j and they do not
delay j anymore.

3. Jobs to whom j sent the (agree) message at or after pulse ¢. In our algorithm,
7 does not wait for these jobs. This does not lead to collisions, since when j
granted them permission to choose their queue-number, made sure it has space
to move forward. By the time j sent out the (¢gree) message, its queue-number
was already ¢ + 1. Therefore, if j granted permission to these jobs, then ¢ is
not occupied by them in either case, and therefore they cannot delay j in this
phase. (If j/ sends its (request) message at pulse m, it gets the (agree) messages
at pulse m + 1, and sends out the (chosen) message at pulse m + 2.)

4. Jobs that sent their (chosen) message at pulse . These might occupy position
¢, since when 7 sent its (agree) message, it was still in position ¢ + 2. Since each
such job has an unoccupied position In front of it, it will decrease its number by
pulse ¢ + 1, and will not detay 7 after pulse 7 + 2,

In order to cover all the possibilities, we have to consider the case where j also sent
its {chosen) message at pulse ¢. In this case, there is an unoccupied position in front
of it, therefore j will decrease its number by pulse ¢ 4+ 1.

This proves the induction claim and completes the proof of the lemma. |1

Corollary 6.4 The above algorithm has expected response time O(8;(u + v)).

Proof: The initial position a job j chooses is < 64;. If it entered the system at pulse
i, then at pulse 7 + 68;({ + 1) the job will enter execution. Since the pulses are O(v)
time apart, and [} = [, the expected response time is O(6;(u + v}). (The response
time is expected because of the entry phase; the queue phase is deterministic.) 1

This algorithm works in the {B, F') model.

291

6.3 The Deterministic Synchronized Queue Algorithm

The deterministic synchronized queue algorithm follows the algorithm presented in
[AS90]. We improve that algorithm by changing the protocol for decreasing the slot
numbers in each level by the queue protocol of our randomized algorithm. (Recall
that in the randomized algorithm only the entry protocol is randomized, the queue
protocol is deterministic.) This change in the algorithm improves its complexity to
O(6;pj +6;vlog Z), where Z is the highest ID of any job in the system. The algorithm
works in the (B, F) model. Details of the algorithm and its correctness proof are
omitted from this abstract.

References

[Awe85] B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32:804-823, 1985,

(ACS92] B. Awerbuch, L. Cowen and M. Smith. Self-stabilizing symmetry breaking
in poly-logarithmic time. Unpublished manuscript, 1992.

[AS90] B. Awerbuch and M. Saks. A dining philosophers algorithm with pelynomial
response time. In FOCS, pages 65-74. IEEE, 1990. '

[CM84] K. Chandy and J. Misra. The dining philosophers problem. In TOPLAS,
pages 632-646. ACM, 1984.

[Dij71] E. W. Dijkstra. Hierarchical ordering of sequential processes. ACTA Infor-
matica, pages 115-138, 1971.

[Lam78] L. Lamport. Time, clocks and the ordering of events in a distributed system.
Commaunications of the ACM, 21:558-565, 1978,

[Lyn81] N.Lynch. Upper bounds for static resource allocation in a distributed system.
J. of Computation and System Sciences, 23:254-278, 1981.

[RL81] M. O. Rabin and D. Lehmann. On the advantages of free choice: a symmetric
' and fully distributed solution to the dining philosophers problem. In 8tk
POPL, pages 133-138, 1931.

[SP88] E. Styer and G. Peterson. Improved algorithms for distributed resource allo-
cation. In 7th PODC, pages 105-116. ACM, 1988.

- Membership Algorithms for Multicast
Communication Groups

Yair Amir, Danny Dolev*, Shlomo Kramer, Dalia Malki

The Hebrew University of Jerusalem, Israel

Abstract. We introduce a membership protocol that maintains the set
of currently connected machines in an asynchronous and dynamic envi-
ronment. The protocol handles both failures and joining of machines. It
operates within a multicast communication sub-system.

It is well known that solving the membership problem in an asynchronous
environment when faults may be present is impossible. In order to cir-
cumvent this difficulty, our approach rarely extracts from the member-
ship live (but not active) machines unjusifully. The benefit is that our
procotol always terminates within a finite time. In addition, if a machine
is inadvertenily taken out of the membership, it can rejoin it right away
using the membership protocol.

Despite the asynchrony, configuration changes are logically synchronized
with all the regular messages in the system, and appear virtually syn-
chronous to the application layer.

The protocol presented here supports partitions and merges. When parti-
tions and merging occur, the protocol provides the application with exact
information about the status of the system. It is up to the application
designer to merge the partitioned histories correctly.

1 Introduction

We introduce a membership protocol that maintains the set of currently con-
nected machines in an asynchronous and dynamic environment. The protocol
handles both failures and joining of machines.

In such an environment, a consistent membership is a key for constructmg
fault tolerant distributed applications. Machines may have to keep track of other
machines in the system. Knowing which machines are connected and active, and
even having this knowledge consistent within the set of connected machines can
be crucial. The problem of maintaining machine-set membership in the face of
machine faults and joins is described in [6].

The protocol presented here is designed to implement the membership main-
tenance in Transis, a communication sub-system for high availability, currently
developed at the Hebrew University of Jerusalem. A Transis broadcast domain
comprises of a set of machines that can communicate via multicast messages.
When sending a message inside this broadcast domain, the Transis sub-system

* also at IBM Almaden Research Center

293

uses the network broadcast capability. Typically, only a single transmission is
needed for eflicient dissemination of messages to the multiple destinations.

Due to the asynchronous and dynamic properties of the environment, mes-
sages can be delayed or can be lost and machines can come up or crash. Moreover,
the network itself may partition and re-connect. The Basic service of Transis
overcomes arbitrary communication delays and message losses and guarantees
fast delivery of messages at all of the currently connected destinations. The
membership protocol automatically maintains the set of currently connected
machines inside the broadcast domain.

The membership protocol is a careful integration of fault and join mecha-
nisms. It preserves several important properties:

— Consensus. It maintains a consistent current configuration among the set of
active and connected machines.

— Virtual-synchrony. It guarantees that members of the same configuration
receive the same set of messages between every pair of configuration changes.

— Spontaneous. The fault machanism is triggered when a machine detects that
communication is broken with another machine for a certain amount of time.
The join machanism is triggered when a machine detects a “foreign” message
in the broadcast domain. The current set then attempts to merge with the
foreign set or sets.

— Symmetric. There are no natural joining-sides and accepling-sides, and the
merging is done multi-way (and not in pairs only).

— Non-blocking. It never blocks indefinitely and it allows regular flow of mes-
sages while membership changes are handled.

— Correct handling of partitions and merges. The protocol also handles failures
that occur during the join.

The most challenging property of our membership protocol is handling parti-
tions and merges. To the best of our knowledge, all of the previous membership
algorithms within similar environments [12, 13, 6, 5, 15, 9] handle the joining
of single machines only. However, in reality, when the network includes bridging
elements, partitions are likely to occur. In this case, there are two or more sets of
machines that need to be joined together. On start-ups, each machine comes up
as a singleton-set, and then two or more merge into larger connected sets, Thus,
we tackle all aspects of joining: re-connecting partitions, recovery or startup of a
single machine, and even moving of a machine from one connected set to another
(the latter being a hypothetical scenario, in our view).

Many systems do not allow partitioned execution, for the reason that system
congistency might be compromised. We believe that the role of the communi-
cation sub-system is to deliver messages where possible, and provide accurate
information about the success of message delivery and connection. The appli-
cation designer should then decide whether execution can continue within the
partitions. It is important to emphasize that the complete merging of the par-
titioned histories is application dependent and therefore is not handled by the
membership protocol. The final section of the paper presents applications that
can benefit from the support of continuous operation despite partitions.

294

As noted by others ([8, 7, 11]), solving the membership problem in an asyn-
chronous environment when faults may be present is impossible. There are var-
ious approaches for circumventing this difficulty ([6, 15, 5, 13, 12]}). Our ap-
proach never allows indefinite blocking but rarely extracts from the membership
live (but inactive) machines unjustfully. This is the price paid for maintaining a
consistent membership within the sets of connected and active machines, in an
asynchronous environment, without blocking. In addition, if a machine is inad-
vertently taken out of the membership, it can rejoin right away using the join
mechanism.

Related Work

Early solutions to the membership problem employed synchronous protocols
([6]). The problem with synchronous solutions is that they rely on synchroniza-
tion properties that are difficult to achieve, and are not supported in standard
environments.

The membership algorithm in the Isis system ([15, 5]) operates over reliable
communication channels and employs a central coordinator, One of the draw-
backs of their algorithm is that during configuration changes the flow of regular
messages is suspended until all the previous messages are processed. In contrast,
the membership protocol presented here is symmetric and does not disrupt the
regular flow of messages.

Later work by Mishra et al. ([13]) suggests a distributed membership al-
gorithm, based on causally ordered messages (see exact definition in the next
section). In this algorithm, the machines reach eventual agreement on member-
ship changes, but the changes are not coordinated. Qur membership protocol
extends their work by guaranteeing virtually synchronous membership changes
at all the machines; in addition, we handle partitions and merges.

The approach taken by Melliar-Smith et al. ({12]) is also distributed, and uses
a probabilistic algorithm. The algorithm is based on totally ordered broadcast
messages, as supported by the Total algorithm ([11]). The coordinated deliv-
ery of totally ordered messages is sufficient for achieving membership consensus,
and their algorithm need not send any additional messages. The main short-
coming of algorithms like the membership algorithm based on Total is that with
small probability, they might block indefinitely in face of faults ([11, 12]). The
protocol presented here differs from {12] in achieving consensus based on causal
messages. Qur approach never allows indefinite blocking but rarely extracts from
the membership live {but not active) machines unjustfully.

2 Transis and the System Model

The system comprises of a set of machines that can dynamically crash and
restart, and network(s} that might partition and re-merge. The machines com-
municate via asynchronous multicast messages. A multicast message leaves its
source machine at once to all the machines in the system but may arrive at

295

different times to them. Messages might be lost or delayed arbitrarily, but faults
cannot alter messages’ contents. Messages are uniquely identified through a pair
< sender, counter > .

Transis contains the communication layer reponsible for the reliable delivery
of messages in the system ([2]). Transis guarantees the causal (see [10]) delivery
order of messages, defined as the reflexive, transitive closure of:

(1) m == m’ if receivey(m) — send,(m')
(2) m == m’ if send,(m) — send,(m’)

In Transis, each newly emitted message contains ACKs to previous messages.
The ACKs form the ==X relation dn‘ectly, such that il m’ contains an ACK to
m, then m =25 m'. If a message arrives at a machine and some of its causal
predecessors are missing, Transis transparently handles message recovery and
re-ordering. Other environments like [5, 14] are equally suitable for providing
the causality requirement. Below, we sometimes refer to the environment and
messages as the Transis environment and Transis messages,

The membership protocol operates above the Transis communication layer,
such that message arrival order within the protocol preserves causality. We think
of the causal order as a directed acyclic graph (DAG): the nodes are the messages,
the arcs connect two messages that are directly dependent in the causal order.
An example DAG is depicted in Figure 1,

Fig.1. An Imaginary DAG

The causal graph contains all the messages sent in the system. All the ma-
chines eventually see the same DAG, although as they progress, it may be “re-
vealed” to them gradually in different orders. Whenever a message is emitted, it

? Note that ‘—’ orders events occurring at ¢ sequentially, and therefore the order
between them is well defined.

296

causally follows all the messages in the portion of the DAG currently revealed
(this results directly from the definition of =),

The Transis communication sub-system receives the messages off the network.
It performs recovery and message handling, and at some later time, it delivers
the messages to the upper level. Transis provides a variety of reliable multicast
services. The services use different delivery criteria on the messages in the DAG.
In some cases, the membership protocol interferes with the delivery of messages,
as we shall see below. The paper [2] provides a detailed description of the Transis
environment and services. Here is a short description of the Transis multicast
services:

1. Basic multicast: guarantees delivery of the message at all the connected
sites. This service delivers the message immediately from the DAG to the
upper level,

2. Causal multicast: guarantees that delivery order preserves causality.

3. Agreed multicast: delivers messages in the same order at all sites, The ToTo
algorithm implements the agreed multicast service in Transis (see [1]).

4. Safe multicast: delivers a message after all the active machines have ac-
knowledged its reception.

The Transis protocols employ the network broadcast capability for the effi-
cient dissemination of messages to multiple destinations via a single transmis-
gion.

3 The Membership Problem

The purpose of the membership protocol is to maintain a consistent view of the
current configuration amoug all the connected machines in a dynamic environ-
ment. This view is used for disseminating reliable multicast messages among all
the members. Each machine maintains locally the following view:

CCS: the Current Configuration Set is the set of machines in agreement.

When machines crash or disconnect, the network partitions or re-merges, the
connected machines must reconfigure and reach a new agreement on the CCS.
The configuration change must take place amidst continuous communication op-
erations. Furthermore, it must indicate to the user which messages are delivered
before the reconfiguration and which after. This last property is termed by Bir-
man et al. virtual synchrony, and its importance is discussed in [3, 4, 5]. We
define the goal of the membership protocol as follows:

P.1 Maintain the CCS in consensus among the sel nf machines that are con-
nected throughout the aclivation of the membership protocol.

P.2 Guaraniee thet any two machines that are connecled throughout two con-
seculive configurafion changes deliver the same sel of messages between the
changes,

297

Note that our membership protocol also handles in full multi-way joining. The
purpose of the protocol is to merge between two or more membership sets, and
to reach an consensus decision on a joined-membership. 1t is possible however,
that only a subset of the live machines succeed in merging their memberships,
due to communication delays. This cannot be avoided, since machines might
appear silent during the entire joining, Nevertheless, the joined set (or subset)
will be in consensus within about its membership.

In order to clarify the discussion and focus on a single execution of the mem-
bership protocol, we add to the configuration description the following vector:

Expected: The Ezrpecled vector contains a message-id per each member of the
CCS. This indicates the next message-id from this member following the
last configuration change. For example, if before the configuration change,
member m has emitted messages up to 19, then Ezpected[m] = 20 3.

Note that the Expected vector removes unintentional agreement on (recur-
ring) membership sets.

4 Handling Faults

This section focuses on a protocol for handling departure of machines from the
set of active ones.

Assume that all the machines belonging to CC'S initially agree on the CCS
contents. The Faults protocol is initiated every time the communication with any
machine breaks. Each machine identifies failures separately. A machine that iden-
tifies a communication-break with another machine emits a FA message declaring
this machine faulty. The FA messages are exchanged within the flow of regular
Transis messages and relate to other Transis messages in the regular causal or-
‘der. The remaining machines in CCS need to agree on the occurred faults. The
main difficulty is to concur on the last messages received from crashed machines,
because these messages may be delayed arbitrarily long,.

Figure 2 depicts a simple scenario of fault handling. In this scenario, machine
A lost connection with machine C after message m, ;. Consequently, A emits
mg,1 declaring C faulty. However, machine B has received further messages from
C, up to m, 3. Therefore, when B concurs via my,;, the causal relations indicate
that messages m. 1 thru m 3 precede the fault.

3 In order to provide unique message id’s, message id’s are pairs (incarnation, counter);
Melliar Smith et al. discuss several conditions for providing this uniqueness require-
ment, among which is the ability to save incarnation numbers on nonvolatile storage,
see [12]. The Ezpected message-id is therefore either within the current incarnation,
or a later one.

* The specific method for detecting communication-breaks is implementation depen-
dent and irrelevant to the Faults protocol. For example, in the Transis environment,
each machine expects to hear from other machines in the CCS set regularly. Failing
this, it attempts to contact the suspected failed machine through a channel reserved
for this purpose. If this fails too, it decides that this machine is faulty.

298

Fig.2. A Simple Fault Scenario

Generally, this situation is handled as follows: When a FA message is in-
serted into the DAG, the faults alogrithm marks it nondeliverable. It releases FA
messages for delivery only after reaching consensus of the remaining machines
about all the faults. Messages of type FA are delivered last in their concurrency
set (i.e. when a FA message causally precedes all the messages in the DAG, it
is delivered). For example, in Figure 2, message m, 1 is delivered after all of C’s
messages, since they are all pecedent or concurrent to it. If there are multiple
concurrent FA messages, they are delivered in a deterministic order. Note that
each fault may be represented by more than one FA message in the DAG; only
the first one delivered aflects the CCS. In this way, all the machines deliver the
same set of causal messages before each configuration change, which guarantees
virtual synchrony. The pseudo-code of the protocol is given in Figure 3.

Each iteration of the protocol collects FA messages from other machines
{or incurs a communication break with a machine). Within each iteration, a
received FA message either increases the F set or results in a consensus decision
that shrinks it to @ (in the last step of the protocol}. Thus, as the faults protocol
is activated many times, F dynamically grows and shrinks; different machines
need not assent fo the same F set, but eventually they will assent to all the
faults contained in the F sets.

Recall that the upper level using Transis is provided with the representation
of the current configuration set, the CCS. Initially, CCS in the upper level
contains the agreed upon membership set. After a faults set is assented to (at
the end of the Faults protocol), the faults are propagated to the upper level via
the FA messages in a series of configuration changes, and eventually the CCS
becomes up-to-date.

As soon as the faults protocol reaches its final step, the internal conditions
that require coordination decisions are changed, even before the delivery of the
FA messages that incur the configuration change. For every f in the F set, this
internal event is called Crash(f). Thus, the protocol assures that the system
will not wait indefinitely for failed machines.

299

Whenever communication breaks with ¢ or a FA message is received:

— if communication breaks with ¢:
f-set = {q}
~ if receive message < FA, f.set > from r:
LAST[r] = LAST[r] Uf_set
mark the FA message non-deliverable
if (fset @ F)
Fz=FUf_set
instruct Transis to disallow any message from f.sel to enter® |
the DAG.
broadcast < FA, F >
if¥g € (CCS\ F) LAST{q]= F
assent to F
mark all the FA messages of F' deliverable
deliver FA messages last in their concurrency sets
F=9
LAST=1

“ unless it is already followed by another message in the DAG and re-
quired for recovery

I

Whenever delivering a FA message < FA, f_set > :

CCS =CCS\ f-set
Vg € CCS : set Expectedq] to the message index following the last
message delivered from g¢.

Fig. 3. The Faults Protocol

After delivering a FA message that removes a machine from the configura-
tion, p changes the Ezpected vector: For each machine in the new membership,
Ezpected will contain the message id that follows the last delivered message.
This id can be either the last counter + 1, or a subsequent incarnation.

4.1 Proof of Correctness

The intuition behind the correctness proof is as follows: Each faults-set F is
acknowledged by all the remaining live procesors, before it is accepted and de-
livered. In the proof we show that this guarantees that the remaining machines
achieve consensus about the messages that precede each FA change. If a machine
receives a message (m) before a FA message, then the acknowledgement FA it
sends follows m in the DAG. Therefore, all the machines that accept FA recover
m (if necessary). On the other hand, if m arrives affer the machine has sent its
acknowledgement, m will be discarded, and all the other machines will discard
it, too. In this way, all the machines deliver the same messages before each FA
configuration change.

First, we introduce some definitions and notations used in the proof. The
data structures names are subscribed with the machine id, as in ‘DAG,’, in

300

places where it is not obvious from the context.
— A pair of machines p, ¢ are in membership consent if

CCS, = CCS,, and
Vt € CCS : Ezpectedy|t] = Fzpected[i]

~ A message m from ¢ causally follows the vector Ezpecied, denoted
Ezpected == m, if either it is the expected message from ¢ (Ezpected(t]),
or Ezpected[f] == m.

— Denote Accept, = CCS, \ Fp. The Accept set contains the (remaining)
machines in C'CS that need to assent to F.

—~ Define:

Votesp(f) = {m|m € DAG,, m=<FA F>, f€F}
Electorsy(f) = {the first message in Votes,(f) from each sender}.

The Electors(f) set contains the first message from each machine that
concurs on f’s fault.

Lemma 4.1 Lelp, g be machines currently in membership consent. Assume that
p is ready to deliver a configuration change (FA) message CCy that removes f
from the CCS,. Let ¢ € Accepty. Then Electors,(f) C Electorsy(f).

Proof: Let e € Electors;(f) be a message from e,. Since p assented to CCy
and since CC; actually removes f from CCS, DAG, currently contains FA
messages that contain f from all of Accept,. Therefore, if e, € Accept,, there is
a FA message ¢’ € DAG, from e, that contains f. By the causality property e
is also in DAGy, and by the definition of Electors,, e € Electors,(f).

Otherwise, e, € F,, where F, is the faults set that p assented to before
delivering CCy. If any of the machines in Accept, received the message e be-
fore acknoweldging F;,, e will be recovered by p (if necessary), and we are done.
Otherwise, all the machines in Accepty receive e after sending approval to Fp.
Therefore, the protocol indicates that they all discard it from the DAG, in con-
tradiction to e € Electorsy(f). D

If a message follows any of the messages in Electors,(f), it is delivered only
after the configuration change of f. All other messages are delivered before the
change. Using Lemma 4.1, we show that the connected machines deliver the
same set of causal messages before the configuration change of f.

Lemma 4.2 Lel p, ¢ be machines currently in membership consent. Assume
that p and q deliver a configuration change message CCy that removes f from
CCS. Assume that p € Accept, and ¢ € Acceply. Then p and ¢ deliver the same
set of causal messages, that follow Erpected and precede CCy.

301

Proof: Applying Lemma4.1 in both directions, we get Electors,(f) = Electors,(f).
Let m be a message, Expected =% m, s.1. m is delivered by p before CC;. Thus,

m does not follow any message in Electors(f). If m causally precedes any mes-
sage in Electors(f), then by the causality property m € DAG, and ¢ delivers it
before CCy.

Otherwise, m is concurrent with all the messages in Electors(f). Thus, m
was sent by a machine in Fy, Fy being the faults set that ¢ assents to before
delivering CCy. If any machine in Accept, received m before acknowledging
Fg, then ¢ will recover it (if necessary) and deliver it before C'Cy. Otherwise,
m arrives after all of Accept; sent their consent to all of Fy, and the protocol
indicates that they all discard m.

Similarly, every message delivered by ¢ before CCy is also delivered by p. D

Theorem 4.3 Let p, ¢ be machines currently in membership consent. If p, ¢
deliver the configuration change (FA) message CCy, such that p € Acceply,
q € Accepty, then:

1. p, ¢ deliver the same sel of messages following Ezpected before delivering
the configuration change message.

2. Erpected, = Ezxpected, after the delivery.

Proof: According to Lemma 4.2, the first claim holds. This immediately implies
that p and ¢ deliver the same configuration changes following Expected (if any)
before CCy. Therefore, CCS, = CCS; after the delivery. Since Ezpected is
defined by the CCS and the first item, which we have shown to be equal, the
second claim holds. O

‘The theorem shows that the state of membership consent is preserved af-
ter each change. By induction, this holds for every FA message, and the faults
(configuration-changes) are delivered in the same order at the machines while
preserving the virtnal synchrony property.

5 Handling Joins

The join mechanism is trigerred when a machine detects a “foreign” message
in the broadcast domain. The current set attempts to merge with the foreign
set or sets. Since it operates in a broadcast domain, we expect this to typically
happen at the other set(s) and the protocol works symmetrically, i.e. there is
no joining-side and accepting-side, Note that actual simultaneity is not required
for correctness. The closer the sets commence, the sooner they will complete the
membership protocol.

302

Enter Stage 0 whenever J = @ and intercepting a foreign message.

broadcast < AJ], CCS >
shift to Stage 1

Enter Stage 1 either from Stage 0, or whenever receiving an AJ message
from CCS.

Set an o timer.
J =008

Whenever receiving an AJ/JOIN message, or & timeout event:

~ if receive a message < AJ, j_set > or < JOIN, j_set > from ¢
J=JUj.set
if it is a JOIN message then LAST[q] = j_set
— if o expires
broadcast < JOIN, J »
shift to Stage 2

Enter Stage 2 from Stage 1, when o timer has expired.

Whenever receiving a JOIN message:

— if receive message < JOIN, j.set > from r € J

LAST[r] = j.set

J=JUj_set

if J changed then broadcast < JOIN, J »
—-ifvVgeJ LAST[ql=J

assent to J

CCS=1J

J=40

LAST = L

Fig. 4. The Simplified Join Protocol, no Faults Handling

5.1 The Simplified Join Protocol

As a first step towards the full membership protocol, Figure 4 contains a join
protocol for a faultless (asynchronous) environment.

Intuitively, Stage 0 “advertizes” the CCS in an attempt to join. Stage 1 is an
optimization step, and its purpose is to collect as many “suggestions” as possible
during an o interval. When the o timer expires, the J set gets fixed and Stage
2 starts. In Stage 2, the machine emits a commitment JOIN message. It tries to
achieve consensus on J, and messages from machines outside J are ignored. If a
member within J emits an expanding suggestion, J is effectively cancelled. The
principle idea is that in this case, it is safe to shift to a different J suggestion,
since, the old J will never achieve consensus (because a required member will
never acknowledge it). In this case, a new commitment is made. Let us first see
why the simple faultless join protocol is correct. The following two claims do not
constitute a full proof of correctness, and are intended only for demonstration

303

of the main properties of the Simplified Protocol.

Lemma 5.1 Lei p, ¢ be machines in membership consent. If both p and ¢ emil
AJ messages, then they emil the same AJ message.

Proof: AJ messages are emitted only at Stage 0. Therefore, since J is @, there
are no pending joinings, and C'CS is agreed-on between p and ¢. O

We need to show that if p,¢ are connected, they deliver the same JOIN
message. The following assures this:

Lemma 5.2 Let p be a machine, such that p assenis to Jp in the last step of
the protocol. Then Yg € J,, q assents lo Jp. '

Proof: Let r € J,,. Since p assents to Jy, r sent a JOIN message with J, = Jyp.
Therefore, any previous JOIN suggestion from r is a subset of Jp {J monoton-
ically increases at each machine). Therefore, r did not send a JOIN message
cancelling (expanding) J, up until it sent J,. Since this is true Vg € J,, there
are no expanding suggestions from within J,. But r is committed to J, after
sending it, and considers messages only from within Jy; therefore there is no
message cancelling J,,. Since for now we assume no faults and no message losses,
eventually, r will receive all the JOIN messages acknowledging J,. O

This protocol forms the basis for the full membership protocol. The next step
is to handle faults occurring during the joining.

The Complete Membership Protocol

In the Complete Membership Protocol we address the following matters that
were left out of the Simplified Join Protocol:

1. Faults handling.
2. Assimilating messages from “foreign” machines during the joining.
3. Preserving the virtual synchrony property.

Fault Handling, The principle idea of consensus decision on faults oceur-
ring during the membership protocol is similar to the fautls-handling protocol
presented above, The difference is that there are two sets of faults: Fiefore and
Fafter . Fhefore contains fautls that are known before emitting the JOIN mes-
sages. These fautls occur effectively in the current membership, before the join-
ing. If there are FA messages concurrent to a JOIN suggestion, a later JOIN
suggestion will include them in Fiyeore . Faprer contains faults that are repoirted
after the JOIN messages. The join-set, J, and the faults-set, Fofore , Fafter , can
only increase during the protocol, i.e. if a machine crashes, it is added to the
faults sets and is not taken out of J until the joining completes.

304

Assimilating foreign messages. The symmertical joining relies on the
broadcast nature of our environment. The join mechanism is triggered when the
machines intercept “foreign” messages. However, the membership protocol re-
quires more than that: it requires reliable and causal message delivery between
all the (now) connected machines. Usually this cannot be done uuless all the
participating machines have already been integrated into the membership 5. For
this purpose, we include a vector with a cul-counier for each machine in the
joined set. The cut-veclor is attached to AJ messages. The vector informs the
communication systems to recover messages for every foreign machine only back
to this counter. Messages from machines outside the current membership are
kept in a separate DAG called the completion-DAG (CDAG) until the member-
shipmembership completes. These messages cannot be delivered until the joined
set is assented to. After the membership protocol terminates, some of these mes-
sages appear to belong to some past membership, and are discarded from the
CDAG (see below).

Virtual synchrony. Another matter that is not handled by the Simplified
Join Protocol in Figure 4 is the preserving of virtual synchrony. The Modified
Join Protocol employs special Transis messages (AJ, JOIN, FA), that relate to all
other messages in the system according to the regular causal order. The delivery
of JOIN messages is delayed until they are assented to or cancelled, in order to
guarantee virtually synchronous configuration changes at all the machines.

When the protocol completes, a certain join configuration message < J, F',
> is assented to. There are many identical JOIN messages representing < J, F,
> in the DAG. The machines update CC'S to be J \ F upon delivery of the first
assented to JOIN message. All the messages in the CDAG that do not follow
the assented to JOINs are discarded from the CDAG. The DAG and CDAG are
merged, and the joined membership’s DAG contains only messages that follow
at least one of the assented to JOIN messages.

Note that due to transient communication problems, intersecting sets may
be formed. Instead of unifying the join sets of AJ messages, we actually keep a
list of joining sets (sets are in their criginal transmitted form). In this way, we
can handle the joining of intersecting sets correctly.

The protocol uses the following data structures per machine: J contains the
total set of known machines, Fiefore is the set of faulty machines contained in
the current JOIN suggestion, Fap., contains faulty machines that are considered
active according to the current JOIN suggestion; J_.LAST and F_LAST are
arrays containing the most up-to-date JOIN and FA sets respectively received
from each machine. We begin by introducing a series of macros in Figure 5. The
Complete Membership Protocol is presented in two parts; the purpose of the
first part (Figure 6, Stage 0 and 1), is to optimize, by collecting as many foreign
join-attempt (AJ) messages, without committing. The second stage (Figure 7)
achieves a consensus decision on the join set.

5 For example, if Transis attempts to recover back messages from any detached set, it
might deadlock waiting for messages that have been discarded long ago. The same
problem will occur in other environments in similar forms.

305

BROADCAST-JOIN:

Fbcfore= FbeforeUFaj'ter H Fafter =4
broadcast < JOIN, J, Frefore >
mark JOIN messages in the DAG that # < J, Fiejore > rejected

BROADCAST-FA:
broadcast € FA, Fuepore U Faster, J; Frefore >
INCORPORATE-JOIN < JOIN, ;_set, f.set > from r:
J=JUjset; J.LAST[r] = < j_sel, f.set >

Fbefore = Fbejore U foset ; F..LAST[T] = F-LAST[T] U f_set
Mark the JOIN message nondeliverable

INCORPORATE-FA < FA, f_set, f;, fr > from + into Fp:

Fr=F:Uf.set ; F.LAST[r]= F_.LAST[r]U f.set
discard all further messages from F;

Fig. 5. Macros for the Modified Join Protocol

5.2 Proof of Correctness

We now formulate a series of claims, whose purpose is to guarantee that con-
nected machines do not assent to different JOIN suggestions. The principle idea
shown by the following claims is that when a machine “shifts” to a new JOIN
message (after committing to a previous one), it is “safe” to do so.

We will refer to the pair < J, Fieor. > 88 a suggested join configuration. We
now define Accept set to be J\ (Fiefore U Faprer).

We employ the following two properties of the protocol:

Property 1 During a membership protocol, the J and Fyepore sets at each ma-
chine are monotonically increasing.

Property 2 If a machine emits a FA message < FA, f_sei, fr, fr > , it has
already emitted a JOIN message containing < fy, fr> .

Lemma 5.3 If ¢ receives {at Stage 2) a JOIN message < JOIN, j_set, f_sel
> from r € Accepty, s.i. jset & Jy, (similarly f_set € Fyepore,), then there
exists @ machine in Accepty that will either never acknowledge ¢’s current join
configuration < Jg, Fiepore, > , or emit a different join configuration before ac-
knowledging Fofier,. Therefore, the join configuration < Jy, Fyepore . > logether
with Fypter, cannot be assented to,

Proof: There are two cases: the first, 35 € Accept, that did not acknowledge <
Jg» Foepore, > and acknowledged j_set (or f_set). By Property 1, s will never
acknowledge < Jg, Fyegore, > , and we are done.

Otherwise, each machine in Accept, has committed to < Jy, Fyepore , > at
some point. Therefore, in order for any one of them to shift to a different join
configuration, it must receive a different suggestion from within J, \ Fj, foreq:

306

Enter Stage 0 whenever J = 8 and F = @ and intercepting a foreign
message:

broadcast < AJ, CCS, cut_vector >
shift to Stage 1

Enter Stage 1 either from Stage 0, or when receiving an AJ message
from CCS:

Set an o timer.

J=CCS.
Whenever receiving an AJ/JOIN message, or a timeout event:

— if receive AJ message < AlJ, j.sel, cut_veclor >
J=JUj_set ‘
extend CDAG recovery for Transis using cul_vector
if receive JOIN message
INCORPORATE-JOIN < JOIN, j_set, f_set > from r
if receive FA message
INCORPORATE-FA < FA, fset, F;, Fy > from r into Foefore
if o expires or communication breaks with any machine in CCS
BROADCAST-JOIN, shift to Stage 2

1

Fig. 6. The Modified Join Protocol: first stage

Therefore, 35 € Accept, that receives a different join suggestion from Fapter,-
Machine s receives this messages before acknowledging F, ter, (otherwise it dis-
cards the message). Thus, before s acknowledges F, ., it shifts to a new join
configuration, Therefore, since the communication is FIFO between s and ¢, s
never acknowledges both J,, Ficgore o 8nd Fapeer . O

Lemma 5.4 If ¢ receives (al Stage 2) a FA message < FA, f.set, f;, fr >
from r € Accept,, s.1.

(1) Jo # fr or Fyepore, # i, and
(2) Sfset € Fbeforeq

Then v will never acknowledge q’s current join configuration < Jgr Foefore, > -

Proof: Since the communication between r and ¢ is FIFO, and Property 2 holds
at =, then fy C Jy and fr C Fieqore, (at least one inclusion is strong). There-
fore, Property 1 assures that r did not acknowledge ¢’s join configuration before
this FA message. Any following JOIN message from r will contain f_set in its
Fyefore field, and will differ from Fyegore,. O

Lemma 5.3 and Lemma 5.4 cover all the cases in which the protocol indicates
to shift to a new JOIN message (emit another JOIN message). The correctness
claim is a direct consequence of this.

307

Enter Stage 2 from Stage 1, when o timer has expired.

Whenever receiving a JOIN/FA message:

— if receive JOIN message from ¢ € J \ (Foepors U Fagter)
if jset € J or f_set € Fpegore
INCORPORATE-JOIN < IOQIN, j.set, f_set > from ¢
BROADCAST-JOIN
else
INCORPORATE-JOIN < JOIN, j.set, f_set > from ¢

— if receive FA message from g € J \ (Fhegore U Faster)
 fr=Jand fr = Focpore
INCORPORATE-FA < FA, f.sel, fs, fr > into Fageer
BROADCAST-FA
else if f_set & Frefore
INCORPORATE-FA < FA, f_sel, fs, fr > into Feefore
BROADCAST-JOIN
else F_.LAST[q} = F_-LAST[q) U f_set
— if communication breaks with ¢ € J\ {Frefore U Fafter)
Fafrer = Fagter U {‘I}
BROADCAST-FA
— let F = Focgore NCCS
if Vg€ (CCS\F) F.LAST[q)2 F
assent to F
mark all FA messages in F deliverable
- ifvgeJ \ (Fbefore U Fa_{ter) :
J_LAST[q] = < J, Foafore > and F_LAST{g] 2 Fajier
assent to < J, Focjore, Faprer >
mark all JOIN messages < J, Foepore > deliverable
mark all FA messages in Foqier deliverable
merge DAG and CDAG from the join point

Fig. 7. The Modified Join Protocol: second stage

Whenever delivering a JOIN message j = < f.set, fo, fa » :

CCS = j.set\ [y

Vg € CCS : set Ezpected[q] to the message index of ¢’s message in
Electors(j).

if there is none, set Ezpected[q] to the message index following the
last message delivered from g¢.

Fig. 8. The Modified Join Protocol: delivery

308

Theorem 5.5 Let p be a machine. If p assents to Jp \ (Foegore, U Faster,) (in
the last step), and g € Accepty, then ¢ cannot assent lo any different join con-
figuration, other than < Jp, Fiepore, >

Proof: Since ¢ € Accept,, there is a point in ¢’s execution when it acknowledged
< Jp, Fiefore, > and Fojpier,, i.¢. it emitted a FA message < FA, Fiepore, U
Faﬂe,,, Jp, Fregore, > . Denote with Situation 0 the situation comprising of
q’s state at this point, and of p’s state when it assents to Jp\(Fiesore, U Faster,).
At Situation 0, Fyefore, = Foefore,r Jp = Jq and Acceptp, = Accepty. Machine
q is committed to this configuration at Situatlon 0. Trivially, ¢ could not have
assented to any previous configuration, and did not emit any expanding JOIN
message before Situation 0. ‘Therefore, we need to prove that given that p has
assented to this configuration, ¢ will not shift to a different join configuration
after situation 0. There are two possible scenarios in which ¢ might have shifted
to a new join configuration:

— If ¢ received a JOIN message < JOIN, j_set, f_set > from r € Accepty, s.t.
j-set € Jq or f_sel € Fyofore,-
-~ If ¢ recelved a FA message < FA, f.set, f;, fr > from r € Acceptq, s.t.
Jq ?(: fyor Fbeforeq # fF, and f..-‘?et Q Fbefors,

In the two cases, lemmata 5.3, 5.4 show that there exists a machine in Accept, =
Accept, that never acknowledges this join configuration (including Fayeer,), in
contradiction to the fact that p assented to it, O

5.3 Proof of Virtual Synchrony Property

The configuration changes that represent joining are required to preserve P.2,
the virtual synchrony property for the higher level applications. Recall that the
joining change is assented to when all the required members (excluding the
faults) send identical JOIN messages . We define:

Electorsy = {m| m = < JOIN,Jp, Fyefore, >, m € DAG,}.

FElectors is the set of identical JOIN messages that promote the assentation
to < Jp, Fhefore, > . The first JOIN message delivered from Electors, makes
the join configuration change. The remaining JOIN messages are discarded as
soon as they become deliverable. Before making the join change, p delivers all the
messages prior or concurrent with Electors,. The merged DAG after this joining
contains all the messages that follow any one of Electorsy. This is defined
exactly by the Expected vector after the joining, Vg € CCS, : FExpected,[q] =
next(e,), where e; € Electorsy is the JOIN message from ¢. The merged DAG
contains the messages that follow Ezpected,.

We already proved that the join configuration < Jy, Fiepore, > is assented by
all of Jp \ (Fy, tore, U Fagter,). We proceed to show they have identical Electors
sets.

309

Lemma 5.6 Let p be a machine. Every JOIN message emilted by any machine
in Jp follows the cul-veclor known to p.

Proof: This results from the fact that each machine either sends an AJ message,
or shifts to Stage 1 when it receives any JOIN or AJ message within its CCS.
Thus, all the JOIN messages from each set follow all the emitted cut-vectors. O

Lemma 5.7 Let p be ¢ machine. If p assents to < Jp, Fiepore, > {and Fopter,),
s.t. ¢ € Accepty, then Electors; C Electors,.

Proof: Let j € Electors,. If the sender of j is in Accepty, then surely p waits
for this message before delivering the join configuration change. Therefore, using
Lemma 5.6 j € Electorsy. Otherwise, j’s sender is in Fyjier, . If any machine
in Accept, received j before acknowledging Faseer,, then p will recover j (if
necessary) and have j € Electorsy. Otherwise, all the machines in Accept, ac-
knowledge all of Faj:er, before receiving j, and they all agree to discard it from
the DAG, in contradiction to j € Electors,. O

Theorem 5.8 Let p, ¢ be machines. Assume that p, ¢ deliver their next JOIN
configuration change message CCyp, CC, respectively, s.t. p € Accepty and ¢ €
Accepty. Then:

1. CCp = CC,. _
2. p and q agree on Expected after the delivery.

Proof: The first claim follows directly from Theorem 5.5. Therefore, p and g have
the same CCS set after delivering CC. From Lemma 5.7, we have Electors, =
Electorsy, which further shows that the Expected array for the CCS is the same
inpandg. O

Thus, we have shown in this theorem that every two machines that merge in
a join procedure, reach membership consent.

Theorem 5.9 Let p, ¢ be machines in membership consent. Assume that p,
q deliver their next configuration change message CCp, CC;y respectively, s.1.
p € Accepty and q € Acceptp.

1. p, q deliver the same set of messages following Expected before delivering
the CC message.

2. CCy, =CC,

3. Expected, = Ezpected, after the delivery.

Proof: The proof of the first claim is identical to the proof of Theorem 4.3,
replacing FA messages with general configuration-changes. We do not repeat it.

310

Claims 2 and 3 are contained in Theorem 5.8. O

Thus, we have shown that if p,q are in membership consent and remain
connected, then they deliver the same configuration changes and remain in con-
sent. Furthermore, they deliver the same set of messages between configuration
changes.

5.4 Proof of Liveness
The membership protocol is provably live if the following two assumptions hold:

1. The set of machines reachable in the system is finite.

2. The system produces admissible histories defined as follows: For each mes-
sage m and each machine p, within a finite time there is either a message
from p following m or p is estracted by a FA message declaring it faulty,

Lemma 5.10 Assume p is in Stage 2 of the protocol. Then within a finite time,

p either assents o the join configuration Jp \ (Fregore, U Fatter,), or one of the
sels Jy, Fp,ef.,,,,, Faﬂer, mcreases.

Proof: Let m; € DAG, be a JOIN or FA message containing < Jps Foefore >
Fagter,. According to the assumptions, p receives a message referring to my from
every machine in Accept, within a finite time, or a machine is declared faulty.
There are a few possibilities:

1. K any message from Accept, expands the suggestion, either Jp or Fyepore,
increases, as required.

2. If there is any FA message following m; that contains faults from Accept,,
then Fyy¢er, increases.

3. Otherwise, the situation is that there are messages referring to m; from all
of Acceptp, 5.1. none of them extends the configuration or suggests any new
faults; therefore, the configuration can be assented to. O

Theorem 5.11 Lef p be a machine that slarts the membership protocol. Then
p completes the prolocol within « finite time.

Proof: Machine p moves to Stage 2 in a constant « delay. In Stage 2, according
to Lemma 5.10, p either accepts its current configuration within a finite time,
or increases one of the sets J, Fiepore , Fajier - Since by the assumptions, this
growths is limited, this can oceur a finite number of times. 0

In our implementation we use a strong extraction rule, using timeout for
extraction. In this case, the liveness claim may have a definite time bound for
completion. However, for purposes of the proof, it is sufficient to assume eventual
extraction, and show eventual termination accordingly.

311
6 Discussion

The maintenance of dynamic membership in a distributed environment is essen-
tial for the construction of distributed fault tolerant applications. We exemplify
this through the following list of applications.

— A general consensus object may be implemented over the dynamic member-
ship in a deadlock free manner. The method is straight forward: each member
machine sends a ‘value’ in a message. The decision value is any deterministic
function of the collected values. If any of the machines should fail during
the procedure, the remaining members learn about the failure within a finite
time and proceed to make the decision using the subset of the values. Note
that this subset is the same at all the machines, due to the virtual synchrony
property. A more complicated consensus decision that utilizes the dynamic
membership is given in [1].

— Fault tolerant mutual exclusion can be achieved, If the holder of a lock should
fail, the remaining machines can retrieve it.

— A set of coordinated processes can provide reliable work-sharing. In this
application, a certain set of tasks is distributed among replicated processes,
each performing a certain portion. If one of the worker-processes should fail,
the remaining machines can reclaim the portion of the work assigned to it.
Note that it is imperative to have up-to-date information about the state of
the failed worker in order to know which interactions (e.g. with clients) were
completed before the failure.

Transis is a transport layer that supports partitioned operation, using the
membership protocol described above. For example, assume there are 50 work-
stations in the computer science department that execute a distributed applica-
tion. If the network is partitioned into two halves, such that each half contains
exactly 25 workstations, each half will gradually remove all the machines in the
other half out of its membership, and continue operation normally. When the
network reconnects, the membership protocol will merge the partitions, provid-
ing the upper level with the exact point in the processing when the join occurs.
It is up to the high level application designer to implement a consistent joining.

We give a few examples of applications that may benefit from the ability to
operate in partitions:

— A network of ATMs that exhibits partitions should allow some transactions
on tellers that are disconnected from the main computer. For example, each
partition of tellers can answer to queries on balance and credit and provide
the most recent information present in the partition. A partition can allow
small amounts to be withdrawn in some cases.

— An airline reservation system can have a standard scheme for dividing the
available tickets between partitions. When a partition occur, each partition
takes a fixed pre-agreed portion of the available tickets and handles them
(perhaps allowing a margin of 10% to remain free, just in case).

312

The applications listed above must handle re-merging carefully, in an applica-

tion dependent manner. The guarantee of virtual synchrony by Transis facilitates
this merging.

References

1.

10.

11.

12,

13.

14.

15,

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Total ordering of messages in broad-
cast domains. Technical Report CS92-9, Dept. of Comp. Sci., the Hebrew Univer-
sity of. Jernsalem, 1992,

. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-

system for high availability. In FTCS conference, number 22, pages 76-84, July
1992. previous version available as TR CS$91-13, Dept. of Comp. Sci., the Hebrew
University of Jerusalem.

. K. Birman, R. Cooper, and B. Gleeson. Programming with process groups: Group

and multicast semantics. TR 91-1185, dept. of Computer Science, Cornell Univer-
sity, Jan 1991.

K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In
Ann. Symp. Operating Systems Principles, number 11, pages 123-138. ACM, Nov
BT.

K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. TR 91-1192, dept. of comp. sci., Conrell University, 91. revised version
of “fast causal multicast’,

. F. Cristian. Reaching agreement on processor group membership in synchronous

distributed systems. Research Report RJ] 5964, IBM Almaden Research Center,
Mar. 1988,

. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for

distributed consensus. J. ACM, 34(1):77-97, Jan. 1987,

M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32:374-382, April 1985,

A. Griefer and R. Strong. Dcf: Distributed communication with fault tolerance. In
Ann. Symp. Principles of Distributed Computing, number 7, pages 18-27, August
1988.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Comm. ACM, 21(7):558-565, July 78.

P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast protocols for dis-
tributed systems. [EEE Trans. Parallel & Distributed Syst., (1), Jan 1990.

P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership algorithms for
asynchronous distributed systems. In Intl. Conf. Distributed Computing Systems,
May 91.

8. Mishra, L. L. Peterson, and R. D. Schlichting. A membership protocol based
on partial order. In proc. of the intl. working conf. on Dependable Computing for
Critical Applications, Feb 1991.

L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using con-
text information in interprocess communication. ACM Trans. Comput. Syst.,
7(3):217-246, August 89.

A. M. Ricciardi and K. P. Birman. Using process groups to implement faiture
detection in asynchronous environments. TR 91-1188, Dept. of Computer Science,
Cornell University, Feb 1991.

The Granularity of Waiting
(Extended Abstract)

James H. Anderson*!, Jae-Heon Yang*!, Mohamed G. Gouda?

1 Department of Computer Science, The University of Maryland
College Park, Maryland 20742-3255 U.S.A.
2 Department of Computer Sciences, The University of Texas
Austin, Texas T8712-1188 U.S.A,

Abstract, We examine the “granularity” of statements of the form
“await B — 57, where B is a boolean expression over program vari-
ables and S is 2 multiple-assignment. We consider two classes of such
statements to have the same granularity iff any statement of one class
can be implemented without busy-waiting by using statements of the
other class. Two key results are presented. First, we show that state-
ments of the form “await B — S” can be implemented without busy-
waiting by using simpler statements of the form “await X7, X 1= ¢*,
and “y := X”, where y is a private boolean variable and X is a shared
singler-reader, multi-writer boolean variable. Second, we show that if
busy-waiting is not allowed, then there is no general mechanism for im-
plementing statements of the form “await B”, where B is an N-writer
expression, using only assignment statements and statements of the form
“gwait C”, where C' is an (N - 1)-writer expression. It follows from these
results that the grannlarity of waiting depends primarily on the number
of processes that may write each program variable.

1 Introduction

Atomic operations are commonly categorized by “granularity”: an operation is
said to be fine-grained if it can be easily implemented in terms of low-level ma-
chine instructions, and is said to be coarse-grained otherwise. The distinction
between fine- and coarse-grained atomic operations naturally arises when con-
current programs are developed in a top-down fashion; under this approach, a
program is first developed using coarse-grained operations, and then each coarse-
grained operation is implemented by fine-grained ones.

In this paper, we consider the latter problem, i.e., that of implementing one
kind of atomic operation in terms of another. Qur specific goal is to determine
the extent to which such implementations can be achieved without busy-waiting.
This has been recognized as an important question for many years, as evidenced -
by the following quote taken from a paper written by Dijkstra in 1976 [8].

* Work supported, in part, by NSF Contract CCR 9109497, and by the Center of Ex-
cellence in Space Data and Information Sciences. The first anthor was also supported
by an award from the General Research Board at the University of Maryland.

314

To what extent the ideal “no unbounded repetitions in the individual
programs” [busy-waiting] can be achieved in general — possibly by al-
lowing certain speciel units of action to refer to more than one shared
variable — is a question to which I don’t know the answer at the moment
of this writing.

The disadvantages of busy-waiting are twofold. First, programs with pro-
cesses that busy-wait may suffer from performance degradation: a busy-waiting
process not only wastes processor cycles, but also consumes memory bandwidth
[10, 19]. Second, the use of busy-waiting often results in programs that are dif-
ficult to analyze and prove correct {5].

Recent work on wait-free synchronization has largely answered Dijkstra’s
question for the case of operations that only read or write shared variables; repre-
sentative papers on wait-free synchronization include [1, 2, 4, 6, 11, 13, 15]. In this
paper, we extend this work by considering conditional operations, i.e., operations
with enabling conditions that involve shared variables. The P semaphore primi-
tive is an example of such an operation: it consists of an assignment “X := X—1”,
where X is shared, that may be executed only when the enabling condition
“X > 0” holds. We represent conditional operations by means of statements
of the form “await B — 5”, where B is a boolean expression over program
variables and S is a multiple-assignment. ‘This statement can be executed only
when its enabling expression B is true. It is atomically executed (when enabled)
by performing its assignment S. We abbreviate such a statement as “await B”
if its assignment is null, and as “S” if its enabling expression is identically true.

Because conditional operations may require processes to walt, wait-free im-
plementations of them in general do not exist. Thus, we are left with a large gap
in our understanding of the concept of “granularity”. In this paper, we bridge
this gap by considering the relative granularity of various classes of await state-
ments. As suggested above, we consider two classes of such statements to have
the same granularity iff any statement of one class can be implemented without
busy-waiting by using statements of the other class. This notion of granularity
extends that used in work on wait-free synchronization.

In the remainder of the paper, two key results are presented.

o First, we prove that statements of the form “await B — 5” can be im-
plemented without busy-waiting by using simpler statements of the form
“await X7, “X := ", and “y := X”, where y is a private boolean variable
and X is a shared, single-reader, multi-writer boolean variable.! This re-
sult shows that, from a computational standpoint, operations that combine
both waiting and assignment, such as the P semaphore primitive, are not
fundamental.

e Second, we show that if busy-waiting is not allowed, then there is no general
mechanism for implementing statements of the form “await B”, where B is

! An m-reader, n-writer variable can be read or waited on by m processes and can be
written by n processes. For simplicity, we do not distingnish between reading and
waiting when classifying variables in this way.

315

an N-writer expression (i.e., one whose value can be changed by N distinct
processes) by using only assignment statements and statements of the form
“await C”, where C' is an (N — 1)-writer expression.

As intermediate steps in establishing the former result, we present solutions
to two synchronization problems. The first is a solution to a new synchronization
problem, defined here for the first time, called the conditional mutual exclusion
problem. The second is a new solution to the mutual exclusion problem in which
processes do not busy-wait and in which only single-reader, single-writer boolean
variables are used.

It follows from the two results mentioned above that the granularity of wait-
ing depends primarily on the number of processes that can write each shared
variable. Other characteristics, such as the number of processes that may read
or wait on each shared variable, the size of each shared variable, and the num-
ber of shared variables that can be accessed within a single statement, are not
as important. Further, these results establish that Dijkstra’s ideal, “no busy-
waiting”, can be realized by using “special units of action” of the form “await
X", “X =y, and “y:= X7, where y is a private boolean variable and X is a
shared, single-reader boolean variable that can be written by any process.

The rest of this paper is organized as follows. In Section 2, we present our
model of concurrent programs and define what it means to irnplement an await
statement of one class by using await statements of another class. The results
mentioned in the preceding paragraph are explained in more detail in Section 3
and are formally established in Sections 4 through 6. Concluding remarks appear
in Section 7.

2 Concurrent Programs and Implementations

A concurrent program consists of a set of processes and a set of variables. A
process is a sequential program consisting of labeled statements, and is specified
using guarded commands [7] and await statements. Each variable of a concur-
rent program is either private or shared. A private variable is defined only within
the scope of a single process, whereas a shared variable is defined globally and
may be accessed by more than one process. Each process of a concurrent pro-
gram has a special private variable called its program counter: the staternent
with label k in process p may be executed only when the value of the program
counter of p equals k. To facilitate the presentation, we assume that shared vari-
ables appear only in await statements. For an example of the syntax we employ
for programs, see Figure 2.

A program’s semantics is defined by its set of “fair histories”. The definition
of a fair history, which is given below, formalizes the requirement that each
statement of a program is subject to weak fairness. Before giving the definition
of a fair history, we introduce a number of other concepts; all of these definitions
apply to a given concurrent program.

A stale is an assignment of values to the variables of the program. One or
more states are designated as initial states. If state ¢ can be reached from state ¢

316

via the execution of statement s, then we say that 5 is enabled at state ¢ and we
write t>u. (In the case of a do or if statement, “execution of statement 5” means
the evaluation of each guard in the statement’s set of gnards, and the subsequent
transfer of control.) If statement s is not enabled at state f, then we say that
s is disabled at 1. A history is a sequence £9-3t;23 ..., where ?p is an initial
state. A history may be either finite or infinite; in the former case, it is required
that no statement be enabled at the last state of the history. A history is fair
if it is finite or if it is infinite and each statement is either disabled at infinitely
many states of the history or is infinitely often executed in the history. Note
that this fairness requirement implies that each continuously enabled statement
is eventually executed. Unless otherwise noted, we henceforth assume that all
histories are fair. '

When reasoning about the correctness of a concurrent program, safety prop-
erties are defined using invariants and progress properties are defined using leads-
to assertions. A first-order predicate B (over program variables) is an invariant
of a program iff it is true in each state of every history of that program. Predicate
B leads-to predicate C in a given program, denoted B w— C, iff for each history
1032124 - - - of the program, if B is true at some state ¢;, then C is true at some
state t; where j > . '

Ag stated in the introduction, we consider two classes of await statements
to have the same granularity iff any statement of one class can be implemented
without busy-waiting by using statements of the other class. We define this no-
tion of an implementation precisely by defining what it means to implement one
program by another. Our notion of an implementation is defined with respect
to programs because a given await statement’s implementation may depend on
the context in which that statement appears. If program P is implemented by
program @, then we refer to P as the implemented program, and @ as the im-
plementation. (Presumably, P has “coarse-grained” await statements, whereas.
@ has “fine-grained” ones.)

In the full paper, we formally define the conditions required of an imple-
mentation. Informally, an implementation is obtained by replacing each await
statement of the implemented program by a program fragment that has the
same “effect” as that statement when executed in isolation. Such a program
fragment is restricted to be free of unbounded busy-waiting loops. Although dif-
ferent program fragments in different processes may be executed concurrently
(i.e., their statements may be interleaved), each program fragment must “ap-
pear” to be atomic; this condition is formalized by requiring all histories of the
implementation to be linearizable [9].

One way to ensure linearizable execution is to use critical sections. This is
the approach taken in most implementations pregented in this paper. In such
an implementation, each statement of the form “await B — S” is implemented
by executing the assignment S as a critical section. Observe that the critical
section that implements § can be executed only when the enabling predicate B
holds. This aspect of conditional synchronization is not taken into account in
traditional synchronization paradigms such as the mutual exclusion problem.

317

3 Results

In this section, we outline the results presented in the remainder of the paper.
As mentioned in the introduction, our most important contribution is to show
that the granularity of waiting depends primarily on the number of processes
that may write each program variable. This conclusion is based on two key re-
sults, which are given in Theorems 1 and 2 below. In these theorems, we consider
programs called “k-primitive programs”.

k-Primitive Programs: A program is k-primitive iff each of its await state-
ments is either of the form “await X”, “X := ¢”, or “y := X”, where y is
a private boolean variable and X is a shared, single-reader, k-writer, boolean
variable, o

‘We first consider three lemmas that are needed to establish Theorem 1.

Lemma 1: Any program can be implemented by a program in which each await
statement is either of the form “await B” or “S”. o

We establish this lemma in Section 4 by considering a variant of the mu-
tual exclusion problem called the condifional mutual exclusion problem. In the
conditional mutual exclusion problem, there is a predicate associated with each
process that must be true when that process executes its critical section. This
problem is motivated by our desire to implement statements of the form “await
B — 8" by using statements of the form “await B” and “S”. Our solution to
this problem shows that it is possible to implement any statement that combines
both waiting and assignment in terms of statements that do not. The next two
lemmas show that we can simplify await statements of the form “await B” and
“S”, respectively.

Lemma 2: Any program in which each await statement is either of the form
“await B” or “S” can be implemented by a program in which each await state-
ment is either of the form “await X” or “S”, where X is a shared, single-reader,
multi-writer boolean variable.

Proof Sketch: We use By, ..., By to denote the enabling predicates of state-
ments of the form “await B” appearing in the implemented program. The im-
plementation is obtained by replacing each statement of the form “await B.” by
a statement of the form “await X;”, where X}, is a shared boolean variable that
differs from any appearing in the implemented program; X; is initially true iff
predicate By, is initially true. Each assignment “S” of the implemented program
that may possibly modify By is modified to assign Xj := Bj. This ensures that
Xy = By is kept invariant for each k. 0

Lemma 3: Any program in which each await statement is either of the form
“await X” or “S”, where X is a shared, single-reader, multi-writer boolean

318
variable, can be implemented by a k-primitive program for some k.

Proof Sketch: In Section 5, we prove that the mutual exclusion problem can
be solved without busy-waiting using only single-reader, single-writer, boolean
variables. As shown in the full paper, it is straightforward to use this solution to
the mutual exclusion problem to obtain a k-primitive implementation. The re-
quired implementation is obtained by first implementing each assignment “S” as
a critical section and by then modifying the program so that only single-reader
boolean variables are used. (The latter is easy to do since assignments of the
implemented program are executed as critical sections.) 0

The preceding three lemmas establish the following theorem.

Theorem 1: Any program can be implemented by a k-primitive program for
some k. a

According to Theorem 1, any program can be “reduced” to one in which each
await statement is as fine-grained as possible, with the exception of multi-writer
variables. In Section 6, we prove that, in general, this “multi-writer barrier” can-
not be crossed. In particular, we consider a variant of the termination detection
problem in which an “observer” process detects the termination of two “worker”
processes. We first show that this problem can be solved without busy-waiting
if the observer is allowed to wait on an expression that may be modified by both
workers. We then show that such a solution is impossible if the observer can wait
on only one worker at a time. This result establishes the following theorem.

Theorem 2: There exists a program that cannot be implemented by any 1-
primitive program. a

4 Conditional Mutual Exclusion

In this section, we define the conditional mutual exclusion problem. We then
present a program that solves this problem in which processes do not busy-wait
and in which only await statements of the form “await B” and “S” are used.
Our solution to this problem is used in the proof of Lemma 1 in Section 3. In
the conditional mutual exclusion problem, there are N processes, each of which
has the following structure.

do true —
Noncritical Section;
Entry Section;
Critical Section;
Exit Section

od

Associated with each process 1 is an enabling predicate B[i] that must be
true when that process enters its critical section. An enabling predicate’s value

319

process ¢
do frue —
Noncritical Section;
ENTRY;
do ~B[i] — EXIT; ENTRY od;
Critical Section;
EXIT
od

Fig. 1. Using mutual exclusion to solve conditional mutual exclusion.

can be changed only by a process in its critical section. It is assumed that each
process begins execution in its noncritical section. It is further assumed that each
critical section execution terminates. By contrast, a process is allowed to halt in
its noncritical section. No variable appearing in any entry or exit section may
be referred to in any noncritical section. Also, with the exception of enabling
predicates, no such variable may be referred to in any critical section. Let ES(z)
(CS5(7)) be a predicate that is true iff the value of process i’s program counter
equals a label of a statement appearing in its entry section (critical section). Let
BCS(¢) be a predicate that is true iff the value of process i’s program counter
equals the label of the first statement in its critical section. (For simplicity, we
assume that this statement is executed once per critical section execution.) Then,
the requirements that must be satisfied by a program that solves this problem
are as follows.

o Mutual Exclusion: (Vi,j : i # j = CS(i) = =CS3(j)) is an invariant.
Informally, at most one process can execute its critical section at a time.

o Synchrony: (Vi ©» BCS(1) => B[:]) is an invariant. Informally, when a
process first enters its critical section, its enabling predicate is true.

e Progress: (Vi :: ES(i) — CS(i) vV —Bli]) holds. Informally, if a process is
in its entry section and its enabling predicate continuously holds, then that
process eventually executes its critical section.

We also require that each process in its exit section eventually enters its nonerit-
ical section; this requirement holds trivially for all solutions considered in this
paper, so we will not consider it further. Observe that the conditional mutual
exclusion problem reduces to the mutual exclusion problem when each process’s
enabling predicate is always identically true.

If busy-waiting is allowed, then it is straightforward to use a solution to
the mutual exclusion problem to obtain a program that solves the conditional
mutual exclusion problem. In particular, consider the program given in Figure
1, which is taken from [5]. In this program, ENTRY and EXIT denote entry and
exit sections from an N-process solution to the mutual exclusion problem. In
order to execute its critical section, process { repeatedly executes ENTRY and
EXIT, checking B[] in between. The critical section is entered only if B[] is true;

320

shared var Q : array[0..N — 1] of 0..N;
T : array[0..N — 1] of 0..N - 1;
B : array[0..N — 1] of boolean

initially (Vi Q[i] = N)

always Cu) = (Ypip#us (Bl = Qbl> w) A Q) #0)
D(u) = Av,wivdunw=ug A v=Tw] A Q]#10)

Il

process u { u ranges over 0.N —1}

private var wu.q¢:0..N
initially vg=N

do true —

: Noncritical Section;

:Qu), ugi=N—-1, N—-1;

T[N -1 =wu;

:dou.g # 0 —
await Blu] A (C(uw) v D{w);
Q[u]’ v.gi=ug—1, ng—1
Tlu.¢) :=u

od;

: Critical Section;

: Qu), wg:=N, N

o =]

od

Fig. 2. Conditional mutual exclusion algorithm.

otherwise, EXIT and ENTRY are executed again. Note that when process i has
executed ENTRY but not EXIT, it is effectively within its “mutual exclusion
critical section”.

In the mutual exclusion problem, a process gets to its critical section by es-
tablishing “priority” over other processes. In the conditional mutual exclusion
problem, a process may have to relinquish and establish priority over other pro-
cesses an unbounded number of times before executing its critical section. To see
this, observe that the enabling predicate of a given process u may be repeatedly
falsified and established by other processes; if u is in its entry section, then in
the former case, 4 must relinquish priority over other processes, and in the latter
case, u must again establish priority. It is this aspect of the conditional mutual
exclusion problem that makes a solution without busy-waiting problematic.

A program that solves the conditional mutual exclusion problem without
busy-waiting is given in Figure 2. This program is derived from Peterson’s solu-
tion to the N-process mutual exclusion problem given in [18]. Processes “transit”
through N 4 1 levels numbered from 0 to N. Starting from level N, processes
compete to enter level 0. A process at level 0 executes its critical section. Q[u]
represents process u’s current level, and w.q is a private copy of Q[u). T[f] records

|

321

the process that arrived last at level j. The await statement shown in Figure 2
allows a process at level j+1 to enter level j only if there are at most J processes
in levels 0 through j. Observe that, if process u’s enabling predicate Blu] is false,
then process u’s await statement is disabled. The always section in Figure 2
is used to define two expressions C(u) and D(u), which appear as shorthand in
the program text; in the definition of these expressions, we implicitly assume
that p, v, and w each range over {0,...,N—1}. Roughly speaking, C(u) enables
process u to proceed when there is no process at level 0 and u is at the low-
est numbered level among those processes whose enabling predicates hold. D(u)
enables process u to proceed if there is another process v that arrived later at
process u’s current level and that process is not at level 0.

The propositions that are needed to prove Mutual Exclusion and Synchrony
are as follows. In these assertions, #@{S} holds iff the program counter of process
i equals some value in set S.

invariant (Vi:0<i< N 2i@{7} = B[i])
invariant (¥i:0<i< N i@{7,8} = Q[}=0)
invariant (Vj:0<j<Nu(Np= Qlp) <) < i+

Observe that the first invariant implies that Synchrony holds, and the second
and third imply that Mutual Exclusion holds. To see the latter, observe that, by
substituting 0 for j in the third invariant, we have (Np :: Q[p] £ 0) < 1, which,
by the second invariant, implies (Np = p@{7h) £ 1.

Establishing the third invariant is the crux of the proof. Observe that process
« may falsify this invariant only by decrementing, its level, @[u], upon executing
statement 5. However, as shown in the full paper, statement 4 allows process u to
decrement Qfu] only when (Np = @[p] < Q[u}) < Q[u] holds. This clearly implies
that the third invariant is not violated. In the full paper, we give assertional
proofs for the above invariants, and define a well-founded ranking to prove that
the program satisfies the Progress requirement.

5 Fine-Grained Mutual Exclusion

In this section, we present a solution to the mutual exclusion problem in which
processes do not busy-wait and in which only single-reader, single-writer boolean
variables are used; we call such a solution fine-grained. Our golution to this
problem is used in the proof of Lemma. 3 in Section 3. As explained in Section 4,
the mutual exclusion problemis a special case of the conditional mutual exclusion
problem in which each process’s enabling predicate is always identically true. For
the mutual exclusion problem, the requirements given in Section 4 reduce to the
following,.

o Mutual Exclusion: (Vi,§ :i# j = CS(i) = —~C8(5)) is an invariant.
o Progress: ES(5) w CS(i) holds for each i.

322

shared var P, Q, T : array[u,] of boolean
initially = Plu] = true A P[v] = true A Qu] = true A Q[v] = true

process u _ process v
private var u.r : boolean private var v.z : boolean
do true — do irue —
0: Noncritical Section; 0: Noncritical Section:
1: Plu] := false; 1: Py} := false;
2: Qu] := false; 2: Qfv] = false;
3: e i=T); 3 v.zi=-Ta);
4: Tiu] := u.z; 4: T[] := v.z;
5. Plu] = u.z; 5. P] = -w.z;
6 Qu] = -u.z; 6: Qfvl:i=v.
7 ifur — 7. ifvz —
8: await Plv] 8: await Plu]
§ .z — | -2z —
9 await ([v] 9: await Q[u]
COf; fi;
10: Critical Section; 10: Critical Section;
11: Plu] = true; 11: P[v] := true;
12: Qu) := true 12: Q[v] := true
od od

Fig. 3. Two-process mutual exclusion algorithm.

As shown in the full paper, an N-process, fine-grained solution to the mutual
exclusion problem can be obtained by “nesting” N -1 different two-process, fine-
grained solutions. The basic idea is to require each process to “compete” with
each of the other N — 1 processes in a fixed linear order. It follows that, in
order to solve the N-process case, it suffices to solve the two-process case. Such
a solution, consisting of two processes u and v, is depicted in Figure 3. The
program is similar to the two-process solution given by Peterson in [18) and also
to that given by Kessels in [12], but uses only single-reader, single-writer boolean
variables.

The two variables T[u] and T'{v] together correspond to the variable TURN
of Peterson’s algorithm, and are used as a tie-breaker in the event that both
processes attempt to enter their critical sections at the same time. Process u
attempts to establish T[u] = T'[v] and process v attempts to establish T7u] #
Tv]. Variables P[u] and Q[u] are used by process u to “signal” the value of Tu]
to process . P[u] is used to signal that T[u] is true and Q[u] is used to signal
that T'fu] is false. Observe that, while the value of T'[u] is being determined in
statements 3 and 4 of process u, the appropriate value to signal is not known, and
thus P[u] and Q[u] are both kept false. Also, when process u is in its noncritical
section (where it may halt) Pu] and Q[u] are both kept true; this ensures that

323

process v does not become forever blocked in its entry section. Variables P[v]
and @[v] are similarly used by process v to signal the value of T[v] to process ,
except their roles are reversed: P[v] is used to signal that T[v] is false, and Q]
is used to signal that T'[v] is true. The algorithm ensures that both processes
never simultancously wait on variables that are false. Avoiding such a situation
is the principal problem that arises when designing a fine-grained solution to
the mutual exclusion problem, as busy-waiting cannot be employed to break
deadlocks.

The propositions that are needed to prove Mutual Exclusion are as follows.

invariant w@{10} = (T[u] A (P[] V v@{2,3} V (-v.z A v@{4,5})) vV
-Tu] A (Q] V v@(3} V (v A v@{4..61)))

jnvariant v@{10} = (T[] A (P[] V v@{2,3} V (uz A u@{4,5})) V
T[] A (Qu] Vv v@{8} V (mu.z A u@{4..6})))

From the above two invariants, we can infer that ~(u@{10} A v@{10}) is
an invariant; this implies that the Mutual Exclusion requirement holds. In the
full paper, we give assertional proofs for these invariants, and use a well-founded
ranking to prove that the program satisfies the Progress requirement.

6 Necessity of Multi-Writer Variables

In this section, we establish Theorem 2 of Section 3 by showing that there exists
a program that cannot be implemented by any 1-primitive program. We do so
by considering a variation of the termination detection problem. In our version
of this problem, there are two “worker” processes u and v and an “observer”
process w. The structure of each process is shown in Figure 4. The “status” of
process u is given by the shared variable UB; u is “busy” if UB is true and is
«idle” otherwise. Process v's status is given by the shared variable VB, which is
defined similarly.

Each of the workers 1 and v executes in cycles. In the beginning of each cycle,
a decision is nondeterministically made to either halt, thereby leaving the given
worker’s status variable forever unchanged, or to continue. Note that it is possible
for a worker to halt while its status is “busy”. The decision to continue can be
made only if at least one of the workers is busy. If the given worker decides to
continue, then its status variable is pondeterministically updated. This updating
is preceded by an “initialization gection” and followed by an “update section”.
These two program fragments are executed in order to inform the observer w of
a possible change in status. The observer executes its “waiting section” until it
detects that both workers are idle, in which case it sets variable w.done to true.
(Note that it is possible that the two workers are never both idle.)

The conditions that must be satisfied by a program that solves this problem
are as fo]lows.

e Reference: Variables UB, VB, u.done, v.done, and w.done cannot appear in
any initialization, update, or waiting section.

shared var UB, VB : boolean
initially

process u

private var

uw.busy, u.done: boolean
initially

w.busy = true A u.done = false

do true —
0: w.done :==UB A ~VB;
1: if true — 2: halt
| —u.done— 3: skip
fi;

4: Initialization Section;
5:if true — 6: UB:=UB v VB
| true — 7: UB = false

fi;
8: w.busy = UB;
9: Update Section
od
process w

private var w.done : booclean
initially w.done = false

0: Waiting Section;

1: w.done := true

UB = true A VB = true

324

Fig. 4. Termination detection problem.

process v

private var
v.busy, v.done : boolean
initially .
v.busy = true A v.done = false

do true —
0: v.done:=—-UB A ~VB;
1: if true -+ 2: halt
| —wv.done — 3: skip
fl;

4: Initialization Section;
5:if true — 6: VB:=UB v VB
| true — 7: VB := false
fi;
8: v.busy := VB;
9: Update Section
od

¢ Boundedness: Each initialization, update, and waiting section must be free
of unbounded do loops.

¢ Termination: Each initialization and update section is guaranteed to ter-
minate. More formally, we require u@{4} ~+ u@{5}, u@{9} — u@{0},
v@{4} > v@{5}, and v@{9} — »@{0}.

* Detection: The observer is able to “detect” that both processes are idle. More
formally, define P detects @ to hold iff P = @ is an invariant and @ — P
holds. Then, we require that w.done detects ~UB A - VB. Observe that,
by the Reference requirement and the program structure given in Figure 4,
- UB A ~VB is a stable property, i.e., once it becomes true, it remains true.

The following two lemmas are used below to prove Theorem 2.

Lemma 4: There exists a program that solves the termination detection prob-
lem.

|
|

325

Proof Sketch: The desired program is obtained by defining the initialization,
update, and waiting sections of Figure 4 as follows.

Initialization Section of u: Initialization Section of v:
4: UX 1= false; 4: VX := false;
Update Section of u: Update Section of v:
9: if w.busy — 10: skip 9:if w.busy — 10: skip
[~ubusy — 11: UX := true | —w.busy — 11: VX = true
fi fi

Waiting Section of w:
0; await UX A VX;

In the above code, UX and VX denote boolean shared variables that are
initially false. For the resulting program, the Reference, Boundedness, and Ter-
mination requirements trivially hold. In the full paper, we prove that the De-
tection requirement also holds by showing that w.done = ~UB A ~VB is an
invariant and that =UB A =VB — w.done holds. i

Define a program to be k-weiting iff each of its await statements is either
of the form “S” or “await B”, where B is a k-writer expression. Note that the
program of Lemma 4 is 2-waiting since the await statement of process w waits
on a predicate that may be modified by both processes u and v. Observe that
a k-waiting program is not necessarily k-primitive. For example, the program of
Lemma 4 has assignments that access multiple shared variables and thus is not
9-primitive. Note that such assignments are actually required by the program
structure in Figure 4; this is why the following impossibility result is stated in
terms of k-waiting programs rather than k-primitive ones.”

Lemma 5: The termination detection problem cannot be solved by any 1-
waiting program.

Proof Sketch: Assume, to the contrary, that there exists a 1-waiting program
P that solves the termination detection problem. We derive a contradiction by
showing that there exists a fair history of P in which there are infinitely many
statement executions of w. This implies that the waiting section of w has an
anbounded do loop, thus violating the Boundedness requirement.

The details of the proof are given in the full paper. The idea is as follows.

" First, we show that process 4 cannot become either directly or indirectly blocked

on process v while v@{0} holds. The proof is based upon the central fact that u
i unable to tell whether v will decide to halt or continue. (If v decides to halt
and u is blocked on v, then the Termination requirement will be violated.) By

2 We could have defined the termination detection problem so that UB and VB are
accessed only via statements of the form allowed by the definition of k-primitive
programs in Section 3. Although this would have obviated the need for defining
k-waiting programs, it would have complicated the proof of Lemma 5.

326

symmetry, it follows that process v cannot become either directly or indirectly
blocked on process u while 4@{0} holds. Using these key facts, the required fair
history can be constructed in a stepwise fashion: in each step, one of the workers
is held at statement 0 and the other worker executes a complete cyle. This his-
tory is constructed so that each worker is idle infinitely often but both workers
are never simultaneously idle. We show that in this history w must repeatedly
check the status of each worker, i.e., w must busy-wait. o

Proof of Theorem 2: We show that the program given in the proof of Lemma
4 cannot be implemented by any 1-primitive program. Suppose, to the contrary,
that such an implementation exists. Then, by using the initialization, update,
and waiting sections of that implementation, it would be possible to construct a
1-waiting program that solves the termination detection problem. This contra- -
dicts Lemma, 5. It is worth pointing out that the program of Lemma 4 can be
implemented by a 2-primitive program by using the techniques given in Lemmas
2 and 3 in Section 3. O

7 Concluding Remarks

The primary objective of this paper has been to determine how programs with
await statements should be categorized by granularity. To this end, we presented
two key results. First, we showed that any program can be implemented by a
k-primitive program for some k. In a k-primitive program, each await statement
is as simple as possible, with the exception that k-writer variables are allowed.
In establishing this result, we defined and solved a new synchronization problem,
the conditional mutual exclusion problem. A surprising consequence of this result
is the fact that await statements that combine both waiting and assignment can
be implemented without busy-waiting in terms of those that do not.

As a second key result, we established the existence of a program that cannot
be implemented by any 1-primitive program. Together, these two results give us
a means for categorizing programs by granularity: the simplest programs are
those that can be “reduced” to l-primitive ones, next are those that can be
“reduced” to 2-primitive ones, etc. These results also show that for N-process
programs, simple statements of the form “await X”, “X = ¢, and “y 1= X”
suffice as synchronization primitives, where y is a private boolean variable and
X is a shared, single-reader, N-writer boolean variable.

Qur results are not merely of theoretical interest, but also have important
practical consequences. On any realistic machine, any await statement that has
a nontrivial enabling predicate must be implemented by means of busy-waiting
at some level. Qur results show that the required busy-waiting is simple. Specif-
ically, our results show that any await statement --- no matter how complicated
-— can be implemented by busy-waiting on single-reader, multi-writer boolean
variables (as would be required by an implementation of the statement “await
X” of the previous paragraph). This stands in sharp contrast to the case of
previous implementations, such as that given in Figure 1, where busy-waiting

327

on complicated “global” predicates is employed. In a recent paper by Mellor-
Crummey and Scott [16], it is shown that busy-waiting on global predicates
is best avoided if programs are required to be scalable, as such busy-waiting
induces an unacceptable degree of memory and interconnect contention.

Our results can be generalized to allow programs with await statements that
have multiple guards. Such statements can be represented as follows.

await By —+ S; | By — S2] - | By — Sy

This statement is atomically executed by performing some assigniment S; whose
guard is true. If more than one guard is true, then the assignment to perform is
selected nondeterministically. Such a statement can be implemented by using a
solution to the conditional mutual exclusion problem, with “B; V --- V By” as
the enabling predicate. Once inside its critical section, a process would simply
select for execution an assignment whose guard is true.

In this paper, we have primarily limited our attention to determining those
implementations that are possible and those that are impossible. Other issues,
such as complexity and performance, are yet to be considered. In all of our im-
plementations, statements are implemented by using mutual exclusion. This is
partly due to the fact that in our main result, namely the implementation of
statements of the form “await B — S”, no restrictions are placed upon the
variables appearing in B or S: such a statement could conceivably reference ev-
ery shared variable of a program! Without such restrictions, an irmplementation
must ensure that only one such statement is executed at a time. By imposing
restrictions on variable access, it should be possible to implement await state-
ments with greater parallelism. The development of such implementations is an
important avenue for further research.

Another important open question is that of precisely identifying the class of
programs that can be implemented by k-primitive programs but not (k — 1)-
primitive ones. Qur results merely establish that any program can be imple-
mented by a k-primitive program for some k. Characterizing the class of pro-
grams that are exactly reducible to k-primitive programs would allow us to pre-
cisely categorize programs by granularity. An important special case is that of
identifying the class of programs that are implementable in terms of 1-primitive
programs. Because any program in this class can be implemented by a program
whose statements are as fine-grained as possible, one could take membership in
this class as a criterion for identifying those programs with an “acceptable” grain
of interleaving. Characterizing this class of programs would thus shed light on
the validity of traditional atomicity criteria such as Reynolds’ Rule [3, 14, 17].

References
1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M, Merritt, and N. Shavit, “Atomic Snap-

shots of Shared Memory”, Proceedings of the Ninth Annual Symposium on Princi-
ples of Distributed Computing, 1990, pp. 1-14.

10.

11.

12.

13.

14,

15,

16,

17.

18.

19.

328

. J. Anderson, “Composite Registers”, Proceedings of the Ninth Annual Symposium
on Principles of Distributed Computing, 1990, pp. 15-30. To appear in Distributed
Computing.

. J. Anderson and M. Gouda, A Criterion for Atomicity”, Formal Aspects of Com-
puting: The International Journal of Formal Methods, Vol.4, No.3, May, 1992.

. 1. Anderson and B. GroSelj, “Psendo Read-Modify-Write Operations: Bounded
Wait-Free Implementations”, Proceedings of the Fifth International Workshop on
Distributed Algorithms, Lecture Notes in Computer Science 579, Springer-Verlag,
pp. 52-T0. Expanded version to appear in Science of Computer Programming.

. G. Andrews, Concurrent Programming: Principles and Practice, The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, California, 1991.

. J. Aspnes and M, Herlihy, “Wait-Free Data Structures in the Asynchronous PRAM
Model”, Proceedings of the Second Annual ACM Symposium on Parallel Architec-
tures and Algorithms, July, 1990,

. E. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

. E. Dijkstra, “A Personal Summary of the Gries-Owicki Theory”, EWDS54, March,
1976. In Selected Writings on Computing: A Personal Perspective, Springer-Verlag,
New York, 1982.

. M. Herlihy and J. Wing, “Linearizability: A Correctness Condition for Concurrent

Objects”, ACM Transactions on Programming Languages and Systems, Vol, 12,

No. 3, 1990, pp. 463-492.

K. Hwang and F. Briggs, Computer Architecture and Parallel Processing, McGraw-

Hill, 1984.

A. Israeli and M. Li, “Bounded time-stamps”, Proceedings of the 28th IEEE Sym-

posium on Foundations of Computer Science, 1987, pp. 371-382,

J. Kessels, “Arbitration Without Common Modifiable Variables”, Acta Informat-

ica, Vol. 17, 1982, pp. 135-141.

L. Lamport, “On Interprocess Communication, Parts I and I1”, Distributed Com-

puting, Vol. 1, 1986, pp. T7-101.

L. Lamport, “win and sin: Predicate Transformers for Concurrency”, ACM Trans-

actions on Programming Languages and Systema, Vol. 12, No. 3, 1990, pp. 396-428.

M. Li, J. Tromp, and P. Vitanyi, “How to Construct Wait-Free Variables”, Pro-

ceedings of International Colloguium on Automata, Languages, and Programming,

Lecture Notes in Computer Science 372, Springer-Verlag, 1989, pp. 488-505.

J. Mellor-Crummey and M. Scott, “Algorithms for Scalable Synchronization on

Shared-Memory Multiprocessors”, ACM Transactions on Computer Systems, Vol.

9, No. 1, February, 1991, pp. 21-65.

5. Owicki and D. Gries, “An Axiomatic Proof Technique for Parallel Programs 17,

Acta Informatica, Vol. 6, 1976, pp. 319-340.

G. Peterson, “Myths About the Mutual Exclusion Problem?, fnformation Process-

ing Leiters, Vol. 12, No. 3, June, 1981, pp. 115-116.

J. Peterson and A. Silberschatz, Operating System Concepts, Addison-Wesley,

1985.

The Cost of Order in Asynchronous Systems

Aleta Ricciardi, Kenneth Birman® *, and Patrick Stephenson?
! Cornell University Department of Computer Science
Ithaca, NY 14853-7501 USA
aleta; ken@cs.cornell.edu
2 Transarc Corporation
Pittsburgh, PA 15219 USA

Abstract. We consider the Group Membership Problem (GMP) in asyn-
chronous systems. This problem consists of maintaining a list of processes
belonging to the system, and updating it as processes join (are started)
and leave (terminate or fail). Our investigations led to four independent
properties that characterize instances of this problem. We closely exam-
ine three membership services, comparing the message cost to implement
them, as well as their fault-tolerance and ability to adapt to environ-
mental changes. We also examine their relative merits by comparing' the
cost to a distributed application that employs each of the membership
services. We show that in typical system executions Strong GMP is less
expensive to implement, is always more responsive to dynamic aspects in
the environment, and allows applications to accomplish more work with
less effort. As Strong GMP is the sole instance providing a linear order
on membership changes, these results emphasize the benefits of provid-
ing Order as well as the cost of not providing it when it is available so

cheaply.

1 Introduction

A distributed sysiem consists of a set of independent and geographically distinct
processors together with some means by which they communicate. Distributed
systems offer substantial benefits over non-distributed systerns, for example in-
creagsed availability and performance. One obtains these benefits by exploiting
replication, locality, and concurrency. Unfortunately, writing programs that take
full advantage of these properties is quite difficult since there will be many

* Research supported by DARPA/NASA Ames Grant NAG 2-593, and by grants from

IBM and Siemens Corporation.

330

' independently-executing processes whose local states and possible interactions
must be understood. Moreover, in many distributed systems there are no timing
guarantees so that both combinatoric complexity and system asynchrony com-
bine to prevent users from realizing the gains originally promised by distributed
environments. However the appropriate formal tools can help us understand
these complex interactions and how they affect the problem at hand.

Process groups have been a particularly useful and natural paradigm for
programming in and reasoning about asynchronous distributed systems. Pro-
cess groups arise, among other cases, whenever processes replicate to provide
faunlt-tolerance and cooperate to execute a distributed event. The particular use
of a process group determines its required behavior and semantics; in some con-
texts members may always need to know the exact composition of the group,
while others do not require such strict coordination. The class of process group
membership problems (GMP). describes the range of desired group semantics
according to the members’ level of agreement on the group’s composition, the
amount of coordination required to change the membership, and so forth. Given
a process group membership problem, a membership service monitors process
groups for clients and ensures that changes to these groups respect the group
semantics specified by the given membership problem {5, 11, 4, 10].

A membership service should be designed fault-tolerantly, and this argues for
replicating the membership service protocol at distinct processors. As a result a
membership service is itself a process group - its members must be informed of
each others’ failures and recoveries! and the membership service will exhibit a
characteristic group semantics.

We have explored four externally-observable consistency guarantees (i.e. char-
acteristic group semantics) that a membership service could provide. They con-
cern the orderin which interested processes see changes to a group’s membership,
the degree of independence with which membership changes are made, unigueness
of the set of processes whose local views are identical, and eventual convergence
of local views to a single view.

This paper examines the cost of providing totally-ordered group membership
changes in asynchronous systems, as well as the cost of doing useful work with
and without Order. We first describe three instances of the process group mem-

! Though we will use the term “recovered”, we actually model a recovered process as
completely new instance of the specified task. This simplifies our algorithms, allowing
us to ignore the case of a process that fails and recovers intermittently.

33

bership problem for asynchronous systems? and their implementations. Strong
GMP provides all four and is the sole instance providing Order. We measure the
cost of providing a given service by counting the number of messages required to
implement it. By proving that each of the implementations we present is minimal
in this regard [12], we are able to quantify exactly the cost of providing Order.
Intuitively, Strong GMP should be more expensive to implement; surprisingly, it
is sometimes less expensive — notably when failures and recoveries are frequent
— than even the weakest forms.

Our second result shows that Strong GMP permits changes of unlimited size
between successive membership views. Significantly, this means a membership
service characterized by Strong GMP is more fault-tolerant and that it can also
reconfigure more quickly to adapt to dramatic changes in its work load.

Finally, we show that, when used as the underlying membership service for
replicated data management, only Strong GMP allows operations to proceed
asynchronously and does not require any operation to abort. This emphasizes
both the fundamental benefits gained from Order, as well as the cost of not
exploiting it when it can be provided cheaply. We conclude that, in the general
case, providing all properties (in particular, Order} is much more useful than
providing any subset.

Section 2 defines the class of asynchronous process group membership prob-
lems, discussing the environment, a logic for specifying the problems, and for-
malizing the four characteristic membership properties. Section 3 discusses algo-
rithms (presented in the Appendix) that minimally implement three instances
of GMP, and compares their message costs and ability to adapt to dynamic as-
pects of the computing environment. In Sect. 4 we compare their utility when
they are the underlying membership service used for managing replicated data.
We conclude in Sect. 5.

2 Group Membership Problems

The Group Membership Problem is concerned with propagating changes in a
process group’s composition to each of its members. There are a variety of re-
quirements and restrictions that describe how, when, and to which processes this
information is disseminated. In this section, we describe the system model specify

these characteristic properties. [13] contains a formal (i.e. logical) specification.

2 An instance of GMP is characterized by the consistency guarantees it ensures.

332

2.1 The Environment and Model

We consider systems in which processes communicate only by passing messages,
and in which both processes and communication channels are asynchronous. The
communication topology is assumed completely-connected and point-to-point,
and its channels are assumed reliable (eventual, exactly-once delivery of uncor-
rupted messages) and FIFO. Processes fail by crashing, but due to communi-
cation asynchrony, such events are impossible to detect accurately [6]. However,
we assume there is some means by which a process comes to suspect another
one faulty, and require that a process receive no further messages from one it
suspects.(e.g. it may disconnect its incoming channel). Lastly, a process’s belief
in another’s faultiness is propagated by gossip (e.g. through piggy-backing) to
other pr'ocesses in future communication, whereupon the recipient adopts the
sender’s belief.? In truth a failure suspicion is simply a one-bit descriptor one
process maintains about another. We require only that the suspicion descriptor
be stable (once set, it remains set), but it need not be based on any observed
condition. Time-outs (together with gossip and disconnect) are one way to imple-
ment the suspector and can be a reasonably-good approximation of true failures.
The gossip and disconnect properties will tend to isolate suspected-faulty pro-
cesses among those with mutual beliefs; i.e. to partition the system into sets of
processes that do not believe each other faulty. Notice that one process’s beliefs
affect another’s behavior only if the first sends a message to the second and only
if the second does not believe the first faulty.

Denote by Proc a finite* set of process identifiers, {p1,...,pn}. A history
for process p, hy, is a sequence of events executed by p, and must begin with
the distinct event sfart,. Processes send and receive messages, and do internal
computation. The event send,(g,m) denotes p sending message m to ¢, and
recuy(p, m) denotes ¢’s receipt of m from p. The distinct event guit, models the
crash failure of process p, after which only other quit, are permitted. Process
p executes faulty,(¢) upon suspecting ¢ to be faulty or receiving a message
gossiping ¢’s faunltiness, and operating,(q) upon believing ¢ has recovered.

A cut is an n-tuple of process histories, one for each process in Proc; ¢ =
{(hpys Ppgs. .. by,). An asynchronous run is a cut in which each history is infi-
nite; a valid run must satisfy the model assumptions (e.g. FIFO channels, dis-

® There is no harm in a process believing itself faulty through gossip.
* Actually the set is infinite to model infinite executions, but at any point in time only

a finite set of processes have existed. See [13] for a full discussion.

333

connect). We assume familiarity with Lamport’s happens-before relation and
consistent cuts[9]. The indexical set Up(c) is the subset of Proc whose members
are functional along consistent cut .

Let LocalViewy (¢) denote p’s local membership view of the group along consis-
tent cut c. The event addy(¢) and removey(g) alter p’s local view by adding and
removing g. Trivially, p € LocalView,(c), and LocalView,(c) is undefined when p
is crashed at ¢. Because hy, is linear, it makes sense to talk about the z** version
of p’s local view; let LocalView] denote the z** distinct instance of p’s local view
in a given run.

We extend local views to consensus views as follows. Given S C Proc, and a
consistent cut ¢, if the local views of all the functional processes in S are iden-
tical, the consensus view is the agreed-upon local view; if S has no functioning
members, the consensus view is empty; and if the functioning members of S have
different local views, the consensus view is undefined. We say that S determines

a consensus view. Formally:

Definition1. Given a consistent cut ¢ and a set of processes, S C Proc, the
consensus view determined by S along cis :

) SnUp(c)=0
LocalView, (c) /\(p, geSN Up(c)) :
(LocalViewp(c) = LocaIViewq(c))

Consensusg{c) =

undefined otherwise.

Instances of GMP can be differentiated with respect to whether a consensus

view need ever exist, and whether S should equal Consensusg(c) when it does.

2.2 Characteristic Membership Properties

The properties described here are broader version of those stated in [11, 13].
Since we are concerned with comparing only consistency properties, we omit
explicit reference to the Liveness and Validity properties.

Eventual Propagation If p executes add,(r) (respectively removey(r)) along
cut ¢, then every process, ¢, in LocalView,(c) eventually executes addy(r)

(respectively removeg(r)) or fails.

334

Eventual Propagation prevents processes from taking actions unilaterally. In
fact, it implicitly forces coordination and communication between p and the
members of its local view before p alters it; that is, p cannot take an action
independently and then hope it can propagate this action to the functional
members of its local view as these process n&ay have disconnected p.

Convergence (with respect to formula ¢). If eventually ¢ is true in a run, then
eventually a consensus view exists.
Quiescence of group § (QUIET(S)), “Hereafter, neither failures nor recoveries
are suspected by members of S, is a common example of such a ¢. Note,
however, that Convergence with respect to QUIET(S) is actually a restric-
tion on the failure suspector’s inaccuracy; since we require a suspector to
eventually detect all true failures and recoveries, quiescence requires it not
to suspect falsely when none are occurring.

Uniqueness For all asynchronous runs and for all consistent cuts in these runs,
at most one subset, S, of processes satisfies Consensusg(c) = S.
Uniqueness is important whenever a process group is being used to simulate
a single, fault-tolerant process, |

Order All processes exhibit the same sequence of local views contemporane-
ously, provided the views are defined. An equivalent formulation is that pro-
cesses in a consensus view proceed to the same next consensus view.

3 Three Membership Services

In this section we examine implementing membership services that ensure

— Convergence with respect to QUIET(S) only,
— Eventual Propagation only,
— all four characteristic properties (Strong GMP),

Using the same knowledge-based techniques as in [14] we can show that the each
algorithm we discuss is message-minimal for the membership service it imple-
ments. Message minimality gives a clean, concrete way of measuring and com-
paring the cost of providing Order. The three algorithms are in the Appendix.
We first show that irrespective of join and leave frequency, a membership
service providing Strong GMP has very low additional overhead compared to
the weaker services. Rather surprisingly, we show that when joins and leaves are
frequent (as is the case in most system executions) implementing Strong GMP

uses fewer messages overall than any of the weaker services because successive

335

phases of s-GMP are compressed. We then show that the Strong GMP guar-
antees permit larger changes between consensus views than does the Eventual

Propagation guarantee.

3.1 Virtual Partitions

The Virtual Partitions protocol (hereafter vp) of El Abbadi, et.al. [1], [2] is
an example of a membership service providing only Convergence with respect
to QUIET(S). Virtual Partitions were proposed as approximations of the can-
communicale-with relation. A process attempts to create a new virtual partition
when 1t detects a discrepancy between (its local view of) the virtual partition to
which it currently belongs and the can-communicate-with relation; for example,
if it receives a message from some process not in its current virtual partition. The
virtual partition to which a process actually belongs may be quite different from
the one to which it believes it belongs and this has important ramifications for
distributed applications. We discuss these issues in greater detail in Sect. 4. The
VP protocol is a two-phase commit protocol with no minimum epproval quote.
Convergence with respect to QUIET{S) requires at least | Proc |+ 2| S| -3
messages, and the vP protocol achieves this minimally when QUIET(S) holds.
There is no limit on the number of processes that can be added or removed

between successive virtual partitions (local views).

3.2 Eventual Propagation Only

We also devised a message-minimal Eventual-Propagation-only protocol (here-
after EP). Like s-GMP it is a two-phase commit protocol that requires an initiator
to block if it does not receive majorily approval to its invitation. The majority
requirement is necessary and sufficient to ensure that knowledge of the existence
of any update that could have been committed will never be lost; the update’s
existence, because it is process-functionality information, is propagated using a
gossip scheme in responses to concurrently-issued and future invitations.

As in s-gMP, at the outset of execution, no EP membership service exists.
Booting the EP membership service also involves a name service and a small,
initial cadre of core members. Let Consensus® denote this initial set.

The approval quole for local view updates is the number of process from
which approval to commit the update is required. Let Sizeof-Maj(G) denote the

minimal size of a majority subset of G; Sizeof-Maj(G) = [J%IJ + 1. In EP the

336

approval quota, AQ(), for p is a function of LocalViewy(c), but in contrast to
8-GMP there is an ¢ priori bound on the number of core members p can add to or
remove from LocalViewy (c) in any single update. Since AQ(LocalView,(¢)) must
be at least a majority suppose:

AQ(LocalView, (¢}) = Sizeof-Maj(LocalView,(c)) + &

where k is fixed, commonly agreed upon at the beginning of each run, and no
more than the size of the largest minority subset of the initial consensus view
(0<k< [COLZ"S”SP-] —1). Then p can, in any single update instance, change
its view by at most, k-1 members. Intuitively, this restriction arises from the fact
that the initial condition is the only commonly-known view upon which processes
agree; it provides the only source of information from which processes can base
an approval quota and still be assured that the set of approving processes will
always intersect,

"The choice of k dictates how easily a process can alter its local view - larger
values of k require more coordination. In practical terms the initial consensus
view will typically consist of no more than three processes, so it is likely that
k <1 in most cases, preventing processes from changing successive local views
by more than two processes at any time throughout an entire run.

Finally, assuming the quota rule is a simple majority then providing Eventual
Propagation requires at least | LocalView,(c) | 4 2Sizeof-Mag(LocalView, (¢)) — 3
messages; EP achieves this lower bound,

3.3 s-GMP

The s-GMP protocol of [11, 13] implements all four characteristic consistency
properties. s-GMP uses the order it provides to rank processes and distinguish
one, the mgr, as responsible for initiating updates to the consensus view.

With s-GMP, one subtle cost of Order is the restriction on process initia-
tive: a lower-ranked process can initiate an update only when it believes higher-
ranked processes faulty. Regarding message complexity, when mgr is believed
faulty, the minimal cost to reconfigure depends on the degree of separation of
local views and the degree of dissemination of the most recent update proposal.
In only one failure scenario are three communication phases necessary, cost-
ing 2(Sizeof-Maj(LocalView,(c)) — 1) extra messages. In all other circumstances,
3-GMP incurs no additional message cost over EP.

337

An intrigning aspect of s~-aGMP is that when changes to the consensus view are
frequent, the cost of each update is less than that of either the vP or EP protocols.
Order, Uniqueness, and Eventual Propagation combine to force any protocol
implementing them to commit an update contingent upon the future removal of
members currently believed faulty. The gossipy nature of our systems has the
affect of making the ‘contingency’, a necessary part of the second-phase commit
message, equivalent to a first-phase invitation message. As a result, when changes
are frequent, the cost of a single update is amortized to n — 1 messages, where
n = | Consensusg(c) | [11]. This is cheaper than either of the other protocols.

Of course there are pathological failure scenarios in which s-GMP performs
poorly. The worst case requires specific processes to fail at the most inconve-
nient times: mgr fails, then its replacement fails immediately before assuming
control, then its replacement fails immediately before assuming control, and so
forth. However, in typical system executions, while failures and recoveries may
be frequent, that particular failure scenario is extremely improbable. In these
situations 8-GMP is, oddly, the least expensive of the three despite providing the
strongest consistency properties.

In contrast to EP, the approval quota for s-GMP is always just a simple ma-
jority of a core member’s current local view. Most significantly, there is no bound
on the number of processes that can be added (obviously only a minority can
be removed) between consensus views! This is indeed unexpected as it allows
successive consensus views to differ wildly. Again, the Order requirement lies
at the heart of the explanation since it forces reconfigurers to query the outer
members for their local states. [t turns out that at every point in the execution
where it might be possible for two update initiators to commit disparate views,
both are competing for a majority subset of the same consensus view - only one
of them can ‘win’, thereafter blocking the other and its approval cohorts.

3.4 Message Complexity Comparison

Tables 1 and 2 summarize the message complexity and adaptahilily of the al-
gorithms just described. While s-GMP is more costly than vP, we believe the
Virtual Partitions approach is ultimately more limited since it converges only in
‘quiet’ systems. S-GMP is no more costly than EP for all updates except mgr’s
removal from the core, and then only in a worst-case scenario. Moreover, we be-
lieve s-GMP will often be less expensive than EP since runs in which 8-GMP can
amortize its message cost (frequent joins and leaves) are far more probable than

338

runs in which EP is cheaper (mgr and its replacements always failing at specific
stages of the protocol).

This should seem contradictory: we are claiming that the more ordered pro-
tocol can be the least expensive and most productive to run. The intuition is
that processes are using their knowledge of the strong ordering properties to
pare down communication; the type and amount of information provided by the
strong consistency guarantees allow processes to infer a great deal about the
global environment independently — notably a consistent ranking of core mem-
bers and the size difference and temporal distance between local views. A less
powerful protocol cannot optimize in this fashion, resulting in a less-efficient
scheme for performing the same updates. Thus, given an ordered protocol, a
series of updates amortize message costs by exploiting knowledge of the strong
ordering properties.

Table 1. Minimal Message Cost for a Single Update to a Local View.

Algorithm Consistency Messages Required

VP Conv wrt QUIET(S) | Proc |+2]85|-3

EP Limited Divergence | LocalView, (¢} |+
2(Sizeof- Maj(LocalView, (¢)) — 1)

$-GMP: non-mgr |Order, Conv wrt TRUE | LocalView,(c) |+
2(Sizeof-Maj(LocalView, (c)) — 1)

S-GMP: mgr No Divergence, | LocalView,(c) |+
4(Sizeof- Maj(LocalView, (c)) — 1}

§-GMP: amortized| and Unigueness ¢ | Consensusg(c) | — 1

4 Using a Membership Service

The complexity results of the previous section address only part of the cost-
comparison issue that is the goal of this paper. A second important metric is
the relative utility these services provide higher level distributed applications.
We measure utility by comparing the application’s total cost when it executes
on top of each of the three membership services. Thus, Order is useful to an

applieation if the application is less expensive to run in an environment that

339

Table 2. Internal Efficiency: Maximum Size Change to Local Views.

Algorithm | Update | Approval Quota
vP | Proci—1 AQ(LocalViewy(c)) = 1.
EP <k+1 AQ(LocalViewy(c)) =

Sizeof-Maj(LocalViewy(c)) + k
where 0 < & < [JCL%MES—UJ.I -1
k fixed throughout run. Usually £ < 1.
Requires | LocalView, | > k.
S-GMP |add: | Proc | — 1| AQ(LocalView,(c)) =
rem: [J_G_p_\/lzﬂgﬂ] — 1| Sizeof-Maj(LocalViewy(c)).

provides Order than it is in an environment that does not. Since Order can be

provided cheaply there would be no reason nof to do so.

To partially address this question, we consider the problem of managing a
single-copy replicated data item. This is a classical problem encountered in both
distributed and database systems; arguably, it is the most important problem
actually solved in current, real distributed systems. Specifically, we consider
algorithms permitting read and update access to a variable shared among the
members of a process group. A correct solution should present the behavior of a
single-copy, non-replicated variable. We do not consider database style transac-
tions, despite the fact that transactions may amortize certain costs over a series
of update operations. Our reason for taking this approach reflects an interest in a
wider range of distributed algorithms, including those cited in the introduction,
which are typical of the functionality provided by a distributed programming
environment (e.g. [3]). The cost of performing a single read or write to a shared
variable is an accurate predictor of the cost of solving these sorts of problems.
The cost of performing true database transactions, while important, is relevant
primarily to a limited class of database-like applications.

For brevity, we assume the existence of a concurrency control mechanism en-
suring that conflicting operations are never scheduled simultaneously {c.f. [1]).
In fact, synchronization mechanisms can be layered over any of the update al-
gorithms described below; the points made below are of general applicability.
Table 3 summarizes this section.

340

Table 3. Utility to Applications of Consistency Guarantees

Algorithm|{External Efficiency:
Work application must do to update replicated data

VP 2-phase commit required for EACH read and write.
Majority of data sites in updater’s virtual partition.
5-GMP Reliable multicast to Consensus(c).

Flush only when Consensus(c) changes.

4.1 Virtual Partitions

Using the VP algorithm, reads can be done locally (or from any accessible copy
of a variable), but every update to a shared variable requires a two-phase com-
mit protocol. It is not hard to understand why this is the case. The membership
consistency guarantees provided by the Virtual Partitions approach do not en-
sure that a process’s local view of its partition represents a possible global state
in the actual system execution. In other words, a process can believe it belongs
to a virtual partition that, in reality, never existed (as a consensus view among
its partition cohorts) along any consistent cut in the execution. The first phase
of the data update protocol essentially detects whether a process’s local view of
its current partition is shared by the members of it; this is necessary because
the one-copy serialization property is known to hold only if the virtual partition
accurately reflects the communication structure at the time an update is done.

4.2 Eventual Propagation

Similarly the EP algorithm is an inadequate base for implementing a shared
variable. Indeed, it is not at all clear that EP provides any meaningful information
for managing replicated data. Recall that within this context, membership in a
group should imply functionality and possession of a copy of a given variable.
EP emits site failure and recovery information, but guarantees neither member
agreement nor that the information is grounded in current reality: when EP tells
p to add ¢, it may be because p once belonged to some other process’s local view
when that process added g. Whether ¢ is functional when p adds it is, under EP,
irrelevant, In this way a process’s local view provides no useful information.

As a result, it is unclear how to use EP in this context so that replicated
updates can be ordered to ensure the one-copy property. Other than a quo-
rum replication method [7], we know of no replicated data-management scheme

341

that could be used to resolve this problem. Additionally, since EP provides no
meaningful information, the cost of even this approach could be prohibitive:
each read or write would involve interactions with multiple processes, and writes
would again require some form of commit protocol. The result is that both read

and write operations will be slow.

4.3 Strong GMP

The s-GMP algorithm, in comparison, offers an extremely lightweight environ-
ment for managing replicated data. In [15] Stephenson showed how to implement
a fault-tolerant, causally-consistent, totally-ordered multicast to group G, using
$-GMP as input, in at most 2 x | G | (but usually | G |) messages. In [8), Joseph
showed that, for a large class of concurrency control mechanisms, a | G |-causal
multicast suffices to perform a replicated update.®> As in VP, reads are local, but
by using such a multicast, writes no longer require a coordinated commit.

To understand why this is so, recall that in contrast to VP and EP, s-GMP forces
every local view to exist as a consensus view along some consistent cut in the
execution. Though a process does not know precisely when that cut occurs, Or-
der allows it to infer that the cut either exists ‘currently’ or will exist ‘soon’ —~
certainly before any other consensus view becomes defined. Consequently, every
process executing an update is certain that the group upon which the update’s
serializability depends is well-defined both in composition and with respect to
its causal-temporal place in the execution. This assurance means that any data
update can be committed safely, despite changes in the underlying group. As a
result, the update protocol can be asynchronous — the initiator need not delay
until the data reaches other group members.

The s-GMP algorithm admits a cheaper and more asynchronous solution to
the replicated data problem then either VP or EP. Of course this does not rule out
the possibility of superimposing a layer on top of VP or EP that would effectively
provide atomic multicast, but such a multicast would then achieve the properties
of the s-GMP algorithm. The minimality proofs show that the resulting solution
could never be less expensive than s-GMP.

Remarks

One might be curious about the practical importance of the distinction we made

above; after all, the cost of running one or two extra rounds in a communica-

5 And to implement concurrency control if necessary.

342

tion protocol will surely be small. However, experience with the ISIS system has
been that similar results apply when solving any of a wide variety of distributed
systems problems using 5-GMP as a system component. The predominant factor
is the ability to issue operations asynchronously, especially beneficial in systems
with bursty patterns of communication. Since operations can be emitted much
faster than they can be sent they will, when issued asynchronously, queue up
for transmission and can then be packaged, several to a message. This amortizes
the physical cost of communication over a series of logical operations, mak-
ing communication appear cheaper as the rate of operations rises. In contrast,
multi-phase operation schemes are necessarily more synchronous since each suc-
cessive operation involves independent communication; this required synchrony
precludes the possibility of lessening the apparent cost of communication.

We conclude that the s-GMP protocol is more powerful in the properties it
preserves, is generally (though not always) cheaper in terms of IMessage com-
plexity than the less ordered EP protocol, and is much cheaper than either ve or
EP when used to solve a distributed data management problem.

5 Conclusions

In this paper we showed that providing linear order on process group membership
changes is both inexpensive and of great utility in asynchronous systems. This in-
volved defining characteristic consistency properties for asynchronous GMP, ex-
amining and developing protocols to build membership services providing these
properties, proving the protocols message-minimal, comparing their costs (num-
ber of messages and magnitude of permissible view changes), and analyzing the
ability and cost to perform some type of useful work on top of the services.
Thus, reasoning from “first principles’, we have been able to make a strong case
for organizing asynchronous distributed systems, at some level, around linearly
ordered changes to process groups.

Practitioners of distributed computing have long looked to theory as a tool
from which insight can be gained into the most appropriate way to structure dis-
tributed systems. Our results suggest that the protocols used to track member-
ship in a distributed application can have a substantial impact on performance.
Surprisingly, they also show that the s-amp protocol, despite (or perhaps, be-
cause of) the very strong ordering properties it achieves, is in many ways the
cheapest possible membership service to support. We conclude from this that

343

next generation distributed systems should routinely provide membership ser-

vices, and that the s-GMP semantics represent the most appropriate ones to use

for this purpose.

References

1

10.

11.

12.

13.

14.

15

. A, El Abbadi, D. Skeen, and F. Cristian. An Efficient, Fault-Tolerant Algorithm
for Replicated Data Management. In Proceedings of the 5th ACM SIGACT-
SIGMOD Symposium on the Principles of Database Systems, pages 215-229.
A.C.M., 1985.

. A. El Abbadi and 5. Toueg. Availability in Partitioned. Replicated Databases.

In Proc. 5th ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,

pages 240-251, Cambridge, MA, March 1986.

K. P. Birman and T. A. Joseph. Exploiting Virtual Synchrony in Distributed

Systems. In Proceedings of the Fleventh ACM Symposium on Operating Systems

Principles, 1987.

T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Ashynchronous

Systems. In Proceedings of the Tenth Annual A.C.M. Symposium on Principles of

Distributed Computing. ACM, August 1891,

F. Cristian. Reaching Agreement on Processor Gronp Memberhsip in Synchronous

Distributed Systems. Technical Report RJ 5964, IBM Almaden Research Center,

August 1990. Revised from March, 1988.

M. J. Fischer, N. A, Lynch, and M. 8. Paterson. Impossiblity of Distributed Con-

sensus with One Faulty Process. Journal of the Association for Compuling Ma-

chinery, 32(2):374-382, April 1985,

. M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types.

ACM Transactions on Computer Systems, 1(4):32-53, 1986.

T. Joseph. Low Cost Management of Replicated Data. PhD thesis, Cornell Uni-

versity, 1986.

I.. Lamport. Time, Clocks and the Ordering of Events in a Distributed System.

Communications of the A.C. M., 21(7):558-565, 1978,

J. Meyer and R. Schlichting, editors. A Membership Protocol Based on Partial

Order, volume 6 of Dependable Computing and Fault- Tolerant Systems, pages 309-

331. Springer-Verlag, Vienna, 1992,

A. Ricciardi and K. Birman. Using Process Groups to Implement Failure Detec-

tion in Asynchronous Environments. In Procedings of the Tenth Annual A.C. M.

Symposium on Principles of Distributed Computing. A.C.M., August 19-21 1991,

This is an extended abstract of Cornell University Technical Report TR91-1188,

of the same name,

A. M. Ricciardi. Practical Utility of Knowledge-Based Analyses. In preparation,

1991.

A. M. Ricciardi. The Asynchronous Membership Problem. PhD thesis, Cornell

University, September 1992.

A. M, Ricciardi. Practical Utility of Knowledge-Based Analyses : Optimizations

and Optimality for and Implementation of Asynchronous Fail-Stop Processes. In

Fourth Conference on the Theoretical Aspects of Reasoning About Knowlege. Mor-

gan Kaufmann, March 22-25 1992,

. P. Stephenson. Fast Ordered Multicasts. PhD thesis, Cornell University, 1991.

344

Appendix

See [13] for the complete algorithms.

The 5-¢MP Algorithm

Task : mgr
while (true)
repeat
GetUpdate(vl);
until (v1 ! = nil-id);
maulticastmgr (LocalViewmgr , M-sub(4v1));
while (v1 ! = nil-id) /* Compressed algorithm loop. */
forall rE LOC&tViengr
recymgr (p, ack(M-sub(+v1))) or faultymgr (p);
if (majority of LocalViewmgr didn’t respond) guitmgr ;
/* Update LocalViewmgyr according to =, */
DoCommit(v1);
GetUpdate(v2);
if (Joining new members)
multicastmgr (v1, Join : State~Xfer);
forall p’ € vl
recvmgr (v1, ack(Join) : NextUpdateys) or faultymgr ();
v2 = NextUpdate,;
multicastmgr (LocalViewmgr , N-com(:kvl) : M-sub(+2));
vl = v2;

Task: Outer Processes, p
recty(mgr , M-sub(tvl));
/¥ Mark the processes of v1 faulty or operational as appropriate, * /
DoPreCommit(v1, £);
repeat
sendy(mgr , ack(M-sub(+v1)));
recvp (mgr ,M-com(xvl) : M-sub(£v2)) or faully,(mgr);
if (IFAULTY, (mgr)
DoPreCommit(v2);
DoCommit(vl);
vl = v2;
else Wait-Reconfiguration();
until (v1 == nil-id);

The vP Algorithm

The following is taken from [1], but amended slightly here for clarity. The vari-
able V Pid is a monotonically increasing integer.

345

Task : Initiator, indl
V Pid = generate-unique-new-VPid();
for each processor p

sendinii(p, VP-invite(V Pid));
awalt responses;
NewV P = Acks(init, VP-invite(V Pid));
for each p € NewV P

sendinie(p, VP-join(V Pid, NewV P));

Task: Quter Processes, p
recup(init, VP-invite(V Pid));
if (V Pid> max-VPid-scen)
depart current virtual partition;
sendy (init, ack(VP-invite(V Pid)));
recvp(init, VP-join(V Pid, NewV P));
if (V Pid> max-VPid-seen) and (same-initiator))
join V Pid and adopt NewV P;

The eF Algorithm

Asg in $-gMP we do not éxplicitly show Disconnect, or error checking. Gossip,
however, is more obvicus: an outer member passes back to an initiator its local
failure and recovery beliefs in the set ProcStatus,.

Task: Initiator, init
while (ProcStatusini: # 0)
GetUpdate(E Pvalue, ProcStatusin);
multicastini(LocalViewinic (), EP-submit(E Pvalue));
for each p € LocalView;n{)
rectinit{p, ack(EP-submit(E Pvalue)) : ProcStatus,) or faultyini:(p);
if (majority didn’t respond) quitin:;
for each p such that ProcStatus, # @
ProcStatus;n;: == ProcStatusinis U ProcStatusy;
DoCommit(£ Pvalue);
multicastini(LocalView;n;t (), EP~commit(E Pvalue));

Task: Quter Processes, p

recvp (init, EP-submit (£ Pvalue));

sendy(init, ack(EP-submit(E Pvalue)) : ProcStatus,);
rectp{init, EP~commit(E Pvalue));

DoCommit(E Pvalue);

Efficient, Strongly Consistent Implementations
of Shared Memory

{EXTENDED ABSTRACT)

Marios Mavronicolas* Dan Roth™

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138, USA

Abstract. We present linearizable implementations for two distributed
organizations of multiprocessor shared memory. For the full caching or-
ganization, where each process keeps a local copy of the whole memory,
we present a linearizable implementations of read/write memory objects
that achieves essentially optimal efficiency and allows quantitative degra-
dation of the less frequently employed operation. For the single owner-
ship organization, where each memory object is “owned” by a single
process which is most likely to access it frequently, our linearizable im-
plementation allows local operations to be performed much faster (almost
instantaneously) than remote ones.

We suggest to combine these organizations in a “hybrid” memory strue-
ture that allows processes to access local and remote information in a
transparent manner, while at a lower level of the memory consistency
system, different portions of the memory are allocated to employ the
suitable implementation based on their typical usage and sharing pat-
tern.

1 Introduection

The shared-memory model is an attractive paradigm of an interprocessor com-
munication model, as it provides the programmer the illusion of a global shared
memory across distributed processes. Implementations of shared memory must
aliow user programs to run “concurrently”, i.e., to access shared data by in-
terleaving steps or truly in parallel. However, even in the simplest cases, non-
instantaneous and interleaving data accesses introduce “correctness” problems.
Thus, a need arises for a consisiency mechanism to support “correct” system he-
havior. Such a mechanism should allow operations to be executed concurrently
on multiple copies of objects, but must still guarantee that the operations appear
as if executed atomically, in some sequential order consistent with the order in
which individual processes “observe” them to occur; it must also guarantee that
the intended semantics of the objects is respected.

Linearizability, generalizing and unifying a number of earlier proposed con-
ditions, is a strong correctness: condition, in that it imposes strong ordering con-
straints on memory accesses performed by concurrent processes. Yet, it has been

* Supported by ONR contract N00014-91-J-1981. E-mail: mavronicedas. harvard. edu
** Supported by NSF grant CCR-89-02500, E-mail: danr@das.harvard. edu

347

argued quite convincingly ([7]) that only linearizability guarantees “acceptable”
concurrent behavior; indeed, linearizability enjoys a number of nice properties,
such as locality (i.e., the memory as a whole is linearizable if each individual
object is), and this makes it quite attractive as a correctness condition for dif-
ferent applications, such as concurrent programming, multiprocessor operating
systems, distributed file systems, etc., where concurrency is of primary interest.

Many authors (e.g., [1, 2, 5, 6, 8, 14]) have argued that supporting strong
consistency conditions is difficult to implement efficiently. In particular, it has
been claimed that although for a lot of applications a significant amount of the
computation does not involve global operations, in order to maintain global con-
sigtency, all operations suffer a slowdown and the degree of concurrency achieved
is limited. Capturing this intuitive tradeoff between the degree of “correctness”
and concurrency, different memory systems have been suggested in order to re-
solve these problems. In most cases, researchers investigated different types of
weaker consistency conditions, placing some of the correctness under the control
of the programmer (e.g., [2, 8]). Other researchers explored the possibility of
structuring the memory system as a hierarchy of caches, counting on some sort
of isolation between processes that access shared data and those that do not. In
some cases (e.g., [2]), a distributed shared memory was implemented by separat-
ing it at a higher level to memory accessed locally and memory accessed through
ordered message passing between processes, thus losing an important advantage
of shared memory abstraction in programming distributed applications, that of
uniformity of accessing, without gaining anything as far as consistency control
is concerned.

Most of these works suffer from that the memory consistency system was
not formally defined, and there was no quantitative analysis of the performance
of the implementations; thus, the tradeoff between the cost of the implementa-
tion and the strength of the consisiency condition was merely qualitative. The
first complexity-theoretic analysis of this tradeoff appears in [4]. There, and in
subsequent papers ([3, 12]), it was quantitatively shown that weaker consistency
conditions can indeed be implemented more efficiently then stronger ones, and
that for strong consistency conditions the cost of implementing them (e.g., worst-
case response time for performing an operation) might have to depend on the
maximal message delay in the system. However, to the best of our knowledge,
the problem of building a distributed shared memory system that allows for “lo-
cal” operations to be performed more efficiently than “remote” ones , while still
supporting strong consistency conditions, has not been quantitatively analyzed
before. '

In this paper, we address these two aspects of the problem; the complexity-
theoretic aspect is addressed by presenting a method for developing efficient
implementations of shared memory which support strong consistency condi-
tions, and proving lower bounds on their costs; the memory-structure aspect
is addressed by exhibiting a memory organization and an implementation as-
sociated with it, that achieves linearizability while allowing local operations to
be performed much faster (almost instantaneously) than remote ones, and by

348

developing the framework of the hybrid memory structure.

In most applications, significant amount of the computation does not involve
global operations, but in order to maintain strong global consistency, all oper-
ations suffer a slowdown. We suggest a kind of hybrid memory structure where
we can make an optimal use of all of the available local memory by combining
various protocols for different variables depending on their typical usage and
sharing pattern. As we develop various linearizable implementations optimized
for a range of possible typical usages and since linearizability is a local consis-
tency condition, we obtain a linearizable memory system.

We consider two aspects of a typical usage of a memory object: mostly-shared
versus mostly-local memory object, and mostly-read versus mostly-write object.
Objects on which a lot of global activity is anticipated are fully cached, using our
Jull caching implementation that allows all processes to perform efficient global
operations on them. For other objects, for which we still want to allow global
access, but anticipate mostly local activity, our single ownership organization
allows local operations to be performed almost instantaneously, at the price of
a bit more expensive remote operations. Truly local objects, which are trivially
linearizable, can be part of the memory system as well. The worst-case response
time of fully cached objects can be furthermore “tuned” (in a precise manner,
by selecting a numerical parameter) based on the more frequently anticipated
operation for that object.

In this paper we develop implementations only under the continuous timing
model, but it is clear that under the umbrella of the hybrid organization, dif-
ferent lmear;zable implementations that are tuned for different typical usages of
the memory can be plugged in; in particular, those might assume different tim-
ing assumptions. We describe in Section 6 future work in this direction, mainly
toward developing the ability to determine, in advance or dynamically, how to
allocate memory objects to variables.

Due to lack of space, the details of some of our definitions, constructions and

proofs are omitted here. We refer the reader to [13] for an expanded version of
this paper. :

2 The Model

The model we consider consists of a collection of application programs running
concurrently and communicating through virtual shared memory which consists
of read/write objects. These application programs are running in a distributed
system consisting of a collection of processes located at the nodes of a complete
communication network®. The shared memory abstraction is implemented by
a memory consislency system (MCS), which uses local memory at the nodes,
and a protocol, which defines the actions taken by processes on operation re-
quests by the application programs. Specifically, each application program calls

? The assumption of a complete communication network is made only for clarity of
presentation and can be omitted; our results extend in a straightforward way to
general networks, :

349

the corresponding MCS process in order to access shared data; the MCS process
responds to such a call, possibly using information from messages sent by other
MCS processes. In doing so, the MCS must provide the proper read/write se-
mantics, with respect to the values returned to application programs, throughout
the network. We make the following timing assumptions: MCS processes obtain
timing information from continuous, real-time clocks that run at the same rate
as real time, but might not be initially synchronized. All message delays are in
the range [d — u, d], for some known constants v and d, 0 <u < d.

We consider a collection of read/write objects and operations defined on
them. An operation is an ordered pair of call and response events. An operation
sequence is called admissible if it obeys the usual read/write serantics; that is,
every read operation returns the value of the latest preceding write operation.

The correctness conditions we are interested in are linearizability and se-
queniial consistency. The definitions of the correctness conditions involve, for an
execution «, the existence of an operation sequence 7 which is a permutation of
the operations in « and possesses certain properties. We say that o is sequen-
tially consistent (cf. [9]) if there exists such an admissible 7 which also respects
a: for each process p;, the restriction of ops(«) (ops(c) denotes the sequence of
call and response events appearing in « in real-time order) to operations of p;
is equal to the restriction of 7 to operations of p;; that is, the sequence of call
and response events in & can be permuted to yield a sequence that is admissible
and maintains the order of events at each process. We say that « is linearizable
(cf. [7]) if there exists such an admissible 7 which respects « and, in addition,
is a-linearizable: whenever the response for operation op; precedes the call for
operation ops in ops(a), then op; precedes opy in 7; that is, the order of any
two non-overlapping operations is preserved. An MCS is a sequentially consistent
implementation if every execution of the MCS is sequentially consistent; simi-
larly, an MCS is a Linearizable implementation if every execution of the MCS is
linearizable.

We use as our cost measure the worst-case response time of performing an
operation in the best possible distributed implementation supporting the consis-
tency condition. We denote by |R| (respectively, |W|) the maximum time taken
by a read (respectively, write) operation, where the maximum is taken over all
executions and read/write objects.

3 Full Caching

In this section, we consider a full caching memory organization, where each
process p; keeps a local copy, X;, for each object X. We develop a family of
efficient implementations of read/write objects that support linearizability. This
is the first linearizable implementation, known for read/write objects?.

We describe a family of implementations, parameterized by 32, and ailow
for the selection of a member of that family, in order to degrade the less fre-
quently employed (read or write) operation. These implementations, C-Linear,

! Earlier results of this research were reported in [12].

350

make heavy use of a novel time slicing technique which is of independent in-
terest. Using this technique, each process individually “slices” time (using its
local clock) and sends messages to other processes only when in an appropriate
time slice. By judicious choice of the sizes of the slices, to be properly related
to the message delay uncertainty u, this technique guarantees for each process
the existence of time periods in which it does not receive any messages. Most
important, it increases the amount of “common knowledge” across the system
without using any control messages; thus, the event of receiving a message in
the system carries with it timing information, without it being explicitly sent as
part of the message. As an outcome, for any given operation, only one message 18
broadcasted in the system, and all messages have constant size, which does not
increase with real time and depends only on the set of values used. (The message
contains only the value being written or read, and one extra bit of information.)

By use of an available total order as a tie breaking mechanism, only one
write operation, among possibly few occurring within a short time period be-
comes effective®; in this way, consistent local copies of memory are maintained.
This common decision is an important ingredient of the correctness of the im-
plementation,

3.1 A Linearizable Implementation

We start with an observation which, in a sense, gives a characterization of a
caching linearizable implementation and motivates our algorithm. Consider two
processes p;, p;, that perform write operations on object X, say, Write;(X, vy)
and Write; (X, v7); assume it is possible for p; and p; to send messages to other
processes, within time less than u, informing them about the values of the write
operations. Due to different message delays, processes p and ¢ may receive these
messages in a different order. Thus, p and ¢ would update their local copies of
X in a different way, if they use nothing but the locally available timing infor-
mation. This would lead to inconsistent copies of local memory, which clearly
breaks linearizability. (Since future read operations on X at p and ¢, that return
different values, can be made to occur in an order such that no permutation of
these operations can both conform to the read/write semantics and preserve the
relative real-time order of non-overlapping read operations.) Thus, more infor-
mation must be used to support linearizability, This motivates our linearizable
implementations,

Our implementation uses a simple synchronization procedure, Synch, origi-
nally introduced and used in [12], which is run during an initialization phase of
the implementation, to enable the processes achieve a certain amount of aceu-
racy. As soon as a process enters the computation, it broadcasts a synchroniza-
tion message synch and sets a timer T for time d thereafter. Each process p; sets
its local time to 0 on either the first receipt of some (synch) message from any

® As we observe later, in a caching linearizable implementation, the decision on which
value to return in a read operation may not depend solely on timing information
available to the process.

351

other process or on expiration of T, whichever happens first. In [12], we show
the following property of Synch ©:

Fact 1. Synch synchronizes the system within accuracy u, .., the marimum
difference between the local times of any lwo processes ai any real time afler all
processes have completed Synch is at most u.

We assume throughout the discussion below that all processes executed Synch
in a prior phase.

The main technical tool developed below is the time slicing technique (See
Figure 1). An important property of our implementations is that in response to a
read request, Read;(X), received by process p;, the process does not necessarily
return the most recent value it received; rather, it chooses and returns a possibly
different one from a set of values of write operations occurring within a small
period of time. It makes this decision based on information that is shown to be
common to all processes, due to properties of the slicing technique. In this way,
consistent local copies of memory are maintained, an important ingredient in
the correctness of the implementation.

Decisions made by individual processes in this implementation, C-Linear, do
not require that processes use any timing information, other than timing them-
selves. (That is, as part of the algorithm a process might use its local clock
to “timeout” itself for a time period.) Thus, messages sent in the system do
not contain any timing information. However, for clarity of presentation, we
first describe the implementation C-Linear as if timing information is part of
the messages, and used by processes in deciding which value to return. Later,
in Subsection 3.2 we prove that this is not required and show how to modify
C-Linear to avoid using any timing information.

We now describe the implementation C-Linear. First the “timings” of the
algorithm are described; next, we describe how a process selects the value it
returns in a read operation. In the following, # (0 £ 8 < 9-;—“—) is a parameter of
the implementation and b > 0 is an arbitrarily small constant.

- Upon a Read;(X) event, p; sets a timer to expire at time Bd thereafter; it
then returns at the earliest time possible, but at least time u after it receives
an update for X. '

— A “time slicing” technique is used for handling writes; roughly speaking,
p; slices each time period of 3u + b into an interval of length 3« in which
actions on a write request may not be initiated, followed by an interval of
length b in which they may. Upon a Write;(X,v) event and when in the
appropriate time interval, p; broadcasts an update(X,v) message and waits
for an additional (1 — 8)d time to set X; to v and issue Ack;(X).

We now describe the mechanism by which p; “selects” a value to be returned
in a read operation: p; considers only values that it previously set X; to, whose

¢ Although, by the results of Lundelius ard Lynch in [11)], an accuracy of v is not
optimal, our synchronization algorithm is extremely simple and an accuracy of u
suffices here.

352

local broadcasting time (for now, assumed to be part of the update message) is
within 2u of that of the message with the currently maximal local broadcasting
time. (It is shown that the most recent value received must be one of them. In
particular, if no update message was received by p; since the last time it returned
a value, the last returned value is the only candidate.) To do so, p; maintains a
set Pend{X) of “pending” update messages that it recently received. Whenever
p: updates X; to v, either on receipt of update(X,v) or as a result of a write
operation Write;(X,v), it adds (v,t) to Pend(X), where ¢ is the local time
at which update(X,v) was broadcasted in the system (possibly, by p;). For a
Read;(X) operation, after a value v has been the content of X; for time at least
u, p; considers only those elements of Pend(X) whose time component is within
2u of the maximal time component of elements in Pend(X). Each such element
defines a candidate value to be returned; p; returns the maximal (with respect to
a total order defined on the values or the processes id’s) of these values. Formally
we show:

Theorem 2. C-Linear is o linearizable implemeniation of read/wrile objects,
which achieves, for each B, 0 < 8 < g—fiﬂ, |R| < Bd-+4u+d, |W| = (1-8)d+3u.

Proof. (Outline} As the bound on |W| is clear, we only need to prove the bound
on the worst-case response time for a read operation, and that the implementa-
tion is linearizable. We start with the former.

It seems as if a deadlock may occur due to successive update events; however,
the time slicing technique assures that this is not the case. We show that for
each process p; there exists a family of “quiet” (update-free) time intervals,
quiet;(k), one for each integer k, with the following properties: p; receives no
update messages in each quiet;(k); gquiet;(k) has length at least u; two such
consecutive intervals, quiet;(k) and quiet;(k + 1); are separated by an interval
of length < 2u + b. These properties imply that any read operation will return
before time 4u + b elapses from its initiation.

We proceed to show that C-Linear is a linearizable implementation, We do so
by explicitly constructing, given an arbitrary timed execution o of C-Linear, an
admissible operation sequence which respects o and is a-linearizable. We outline
below the construction and the main ideas used in proving its correctness.

The construction proceeds in two phases. In the first phase, we “serialize”
each read and write operation in « to occur at the time of its response in «,
breaking ties by ordering all write operations before read ones that occur simul-
taneously and then using <y. Clearly, by construction, the sequence +', which
results from the first phase of the construction, maintains the order of opera-
tions at each process, that is, it respects w. Also, the order of non-overlapping
operations is maintained, and 7’ is a-linearizable. However, it might not be ad-
missible.

In the second phase, we trace all admissibility violations in 7/, and fix each
such violation, while still maintaining the fact that it respects o and is a-
linearizable, by “locally” permuting operations in the sequence. We scan the
sequence 7' from its beginning, and show that by using this procedure, the in-
dex of the first operations in which a violation occurs, strictly grows as we fix

3563

a violation, and that no new violation is generated; this implies, inductively,
that this procedure results in an admissible sequence 7 which respects o and is
c-linearizable, thus proving that the implementation is linearizable.

We now elaborate on the second phase of the construction. Fix any timed
execution a of C-Linear, and let 7' be the operation sequence resulting from the
first phase. Scan 7' till a read operation rop; is reached such that a sequence of
operations wop,, wopz, rop; is a subsequence of 7/, where: all these operations
are performed on some read/write object X; wop; and wopsy stand for operations
that write the values v, v2 (v1 # w¥2) on X, respectively; rop; stands for a read
operation on X that returns v, and wops is the latest write operation in r that
precedes ropy in 7. We show first that this subsequence is the only possible
form of an admissibility violation; this follows since a read operation can return
a value only after the corresponding write operation returns.

To fix this viclation we distinguish between two cases, depending on whether
wop; and wops were broadcasted in the same slice or not. In both cases, we
identify a permutation that we perform on the operation sequence; we prove that
the permuted sequence 7, like 17, respects «, is a-linearizable, does not contain
any violation that was not already in 7/, but the first admissibility violation in
11, if exists, appears in it later than in 7.

In order to prove that operations can be permuted, we prove that certain
operations must overlap in time, and show that in certain cases, it is not possible
for a read operation occurring in a certain time interval, to return a certain
value. These hidden time constrains result from properties of the time slicing
technique that we prove. In particular, we show that values can be candidates to
be returned by some read operation, if and only if they were broadcasted in the
“same” slice (e.g., all broadcasted in the 7-th slice, which may reflect different
real times).

Since we scan 7 from the beginning to trace admissibility violations, and
showed that each “fix” we make, resulting in 71, extends the “legal” prefix of the
operation sequence, without introducing new violations, by induction, this re-
sults in an admissible sequence which respects @ and is a-linearizable, as needed.

3.2 Messages with No Timing Information

In this subsection, we briefly describe how the algorithm C-Linear can be imple-
mented so that a decision made by an individual process does not require the
use of any timing information except for that of its own local clock. Thus, there
is no need for timing information to be included in the messages and these have
constant size that depends only on the set of values used.

We describe next the modification made to the version of C-Linear given
in Section 3.1. In short, performing C-Linear without using timing information
requires slightly more local computation by the deciding process. As we show,
the ability to make exactly the same decisions without using timing information
stems from the time slicing technique, since utilizing this technique, delivered

P, P, Py
[TV) S T SO RSN SE S ne
k(3u-+b) - _t <u
k{3u+b)-b
i — K(3u+b)
(k+1)3u+b)-b —
{k+1)(3u+b)
(k+1)(3u+b)-b
{(k+1)(3u+b)

sremmen guiet interval

broadcasting interval

nessages to Pj

Fig. 1. The slicing technique

messages carry with them timing information without it being explicitly part of
them.

As described before, the message update(X, v) contains a pair (v,1), where v
is the value written, and ¢ is the reading of the local clock of the writing process
at the time the update message is broadcasted. Clearly, the size of this message
gets unbounded, as ¢ grows. We outline below how to implement the algorithm
using, only one extra bit (in access of the value v). More specifically, we show
that it suffices to include in the message, instead of the local time ¢, only the

355

parity bit of the number of the timeslice in which the message is broadcasted.
(We say that update(X,v), broadcasted at local time ¢, is broadcasted in the
k—thslice if (Ju+b)k—b<t <(3u+bd)k.)

To support this economic implementation, we prove that the time at which
a process receives a message is tightly coupled with the slice in which it was
broadcasted in the following way: a message that is broadcasted in the k — th
slice, by some process, is received by all processes before a message that is
broadcasted in the I — th slice, providing that k& < I; moreover, if [— k > 1, it is
guaranteed that there is a gap of at least 3u between the time at which a process
receives the first message and the time it receives the second one.

Now, for each message update((X, v),t), previously used in C-Linear, the writ-
ing process p; writes the value v and, instead of its local clock ¢ at the time of
broadcast, it writes b, = k mod 2, such that (3u+)k — b <t < (3u + b)k (that
is, the least significant bit of the slice number k). p; then uses an internal flag
that signifies when more than 3u has elapsed from the time at which it received
the last update to object X. ‘

Clearly, due to the relation between delivery times and broadcasting times,
and since different values are candidates to be returned by read operation if
and only if they were broadcasted in the “same” slice, with this modification,
C-Linear is implemented with constant size messages.

4 Single-Ownership

In this section, we consider the single ownership organization, in which each
memory object is “owned” by a single process, the one that is most likely to
perform frequent operations on that object. For this organization we develop a
linearizable implementations in which local operations can be performed very
efficiently, at a quite moderate price of some slowdown in performing remote
operations. It is notable, though, that our implementation allows for efficient
local operations, a feature sought after by other researchers as well (e.g., (2, 6]),
but is still linearizable.

In the single ownership organization the owner of an object (also called the
master process for that object) is the only process which keeps a local copy
of it, and coordinates operations performed by other processes’ on it. In this
way, a process can access objects owned by it almost instantaneously, depending
only on the uncertainty in message delays u. Since the underlying assumption
for this organization is that variables might have different sharing patterns, a
process can access an object owned by a different process, but the cost.of such
an access depends, naturally, on the communication latency d. As expected, the

7 We do not assume that processes know which process “owns” each memory object. In
our protocol each process, upon a read or write request, broadcasts a message, as in
Section 3, but only the master process for that object takes action on this message.
There is a clear trade off between the communication overhead of this protocol and
the amount of storage and techniques (e.g., hashing) used for the local storage, which
we do not discuss here.

356

cost of such a remote operation is slightly higher than that of performing a global
operation in the full caching model.

Clearly, if we assume that “information” about a read/write object X may
flow from the master process pX to a different pracess only upon request, no
implementation can achieve a worst-case response time for read operations which
15 less than 2d. However, if this assumption is removed, this simple lower bound
is no longer valid, since, for example, pX may periodically send the value it
currently keeps of X to all other processes. Due to communication overhead
considerations, however, we choose to have information flowing from a master
process to other processes only upon request.

SO-Linear is much simpler than the corresponding caching implementation;
the fact that operations on a given object are coordinated by a single process
allows for an efficient implementation without using the time slicing technique
introduced for the full caching case. As a result, the proofs of correctness, albeit
similar to their caching counterparts, are simpler.

We start with an informal description of the linearizable implementation
SO-Linear:

— Upon a Read;(X) event, a process p;, different from pX, sends a message
read(X) to p* and sets a timer for time 2d + u thereafter. On expiration of
the timer, p; returns the value it received from p* . Upon receipt of read; (X)
from p;, pX sets a timer for time u thereafter, when it sends the current value
of X to p;.

— Upon a Write;(X, v) event, p; immediately sends a message update(X,v) to
p* and sets a timer for time d thereafter; upon its expiration it acknowledges.
On receipt of update(X,v), p* sets a timer for time u thereafter, when it
updates X to v,

~ Let p; = pX. Upon a Read;(X) event, pX sets a timer for time u, when it
returns the value it holds for X. Upon a Write;(X, v) event, pX sets a timer
for time u, when it sets X to v and acknowledges.

Formally we show:

Theorem 3. SO-Linear is a linearizable implementation which achieves |R| = u,
|W| = u for local operations and |R| = 2d 4+ u, |W| = d for remote operations.

Proof. (Outline} The algorithm SO-Linear clearly achieves the stated worst-case
response times. We only need to show that the implementation is linearizable.
The structure of this proof is essentially the same as that of the proof of The-
orem 2, so we will not repeat it here. There are two main differences between
the proofs, though. One is that after characterizing the form of an admissibility
violation, which, as in Theorem 2, has the form wop; , wops,, ropy, and in order to
fix this violation, we proceed by case analysis on the order in which the memory
object X is being updated to values v; and vy, by the master process p%. The
second difference is that this time, the constraints on the ordering relationship
between operations, by which we prove the required properties of the algorithm,

357

do not result from the time-slicing, but rather from the existence of a single pro-
cess that coordinates operations on an object. In particular, to prove properties
of the implementation, we rely on that in all cases, the master process X never
updates or reads a value from X before at least time u elapses from the time of
the operation request, in order to avoid possible problems due to uncertainty in
message delay.

As in Theorem 2, we show that since we scan 7' from the beginning to trace
admissibility violations; and show that each “fix” we make, resulting in 7, ex-
tends the “legal” prefix of the operation sequence, without introducing new
violations, by induction, this results in an admissible sequence which respects «
and is a-linearizable.

5 Lower Bounds

In this section we present lower bounds for consistent implementations under
general assumptions on the pattern of sharing properties of processes.

Our main impossibility result is a lower bound of d + % on the sum of the
worst-case response times for read and write operations in any sequentially con-
sistent, object-symmetric and object-independent implementation. (This implies
a corresponding lower bound for linearizable implementations.) That is, we as-
sume that read and write operations are handled by processes in a symmetric
way with respect to the objects they are performed on. In particular, processes
use the same algorithm for all objects. This implies that the results in Section 3
are optimal up to a small additive number of multiples of u.

The lower bound proof combines the use of various methods already common
in the theory of distributed computing, namely, symmetry arguments and the
technique of “shifting” executions (originally introduced in [11]), with a novel
technique of augmenting executions to “causally link” them. The known lower
bound of d — u on message delay time is used in constructing the executions, to
achieve non-availability of knowledge to processes. As part of this proof, we derive
a property of any sequentially consistent implementation which is of independent
interest and might be used for verifying correctness of such implementations. In
the following, we only sketch the constructions and the proofs.

Theorem 4. In any sequentially consistent, object-symmetric and object-independent
implementation of at least three objects using at least four processes, |R|+|W| >
d+ 35

Proof. (Outline) Assume, by way of contradiction, that there exists a sequen-
tially consistent, object-symmetric and object-independent implementation of
such objects for which |R} + [W}| < d + %. We construct an execution in which
two different processes, p and p’, performing successive read operations on an
object X are “forced” by symmetry to return values v; and vy in different order;
this, clearly, violates sequential consistency. We appropriately choose massage
delay times in our construction to achieve such symmetry. Specifically, we con-
sider two write operations that write v; and vy, and make p “learn” quickly

358

about the write of v}, but not about the write of v3. (The roles of v; and v, are
reversed for p’.) Hence, assuming rapid completion of successive read and write
operations (i.e., || + |W| < d + u/2) forces the read operations by p and p' to
return different values and establishes the contradiction. Two technical claims
facilitate our main construction.

Our first claim (inspired by a result in [10]) shows that by carefully choosing
message delays, and using the shifting technique, a non-symmetric configuration
“looks” totally symmetric to the processes. Specifically, let p;, starting at time
0, write vy on Y, and immediately read X and, p;, starting at time %, write v
on X, and immediately read Y. (Assume that both X and Y are initialized to
vp). We show that in this case, the read operation by p; returns v,.

We then provide a necessary condition that sequentially consistent implemen-
tations must satisfy. Consider an execution in which there are only two write
operations on X, which write different values vy, vy. Then:

Claim 5. Let processes pi,p; perform a read operation on X, after both wriles
on X are compleled and p; and p; “learn” aboul them. Then, both read operations
return the same value.

We prove this claim by contradiction. The main tool used in the proof is that
of “interrupting” two sequences of reads by p; and p; and augmenting them by
adding operations to causally link these two sequences, thus contradicting the
assumption that the processes can return different values.

We now informally describe our main construction. Processes p and p’, start-
ing at time 0, write v{ on Y, read X, write v» on ¥ and read X again. Processes
g and ¢’, starting at time %, write v; and v on X, respectively, and then read
Y. Messages from ¢ to p and from ¢’ to p’ take time d — u, while messages from
¢’ to p and from q to p’ take time d.

Applying our first claim to p, ¢ and to p’, ¢’ implies, by symmetry, that the
first read operation of p on X returns v;, while the first read operation of p’
on X returns vy. (The delays, along with the assumption |R|+ |W| < d + u/2,
guarantee that the behavior of p is not affected by writes of vo, and likewise
for p’ and v;.) By the symmetry in our construction, the second reads of X
by p and p’ must return different values. Claim 5 implies that it cannot be the
case that the second read by p returns vy, while the second read by p’ returns
vy. It follows that they return v, and vy, respectively. This, however, violates
sequential consistency.

Since linearizability implies sequential consistency, we immediately have:

Theorem 6. In any linearizable, objeci-symmetric an object-independent imple-
mentation of at least three objects using at least four processes, |R|+|W|> d+%.

We remark that the previous lower bounds do not apply to the single-ownership
implementation presented in Section 4, where different processes may run dif-
ferent algorithms for different objects. Also, under the hybrid memory structure
described in Section 1 this lower bound holds only for objects of the same type

359

(e.g., allocated to the full-caching organization) and processes uniformly access-
ing them.

Our next impossibility result is a lower bound of % on the worst-case response
time for a read operation in any linearizable implementation. The proof makes
use of the “shifting” technique to improve upon a lower bound given in [4].

Theorem 7. In any linearizable implementation of a read/write object X that
can be accessed by at least two processes, |R(X)| > .

6 Discussion and Future Research

This paper continues the complexity-theoretic study of the costs of implementing
memory objects under various correctness conditions for shared-memory multi-
processor systems, initiated in [4, 10] and further pursued in [3, 12). Furthermore,
we suggested a new kind of memory organization, which combines all the ad-
vantages of a global strong consistency condition with the ability to efficiently
perform local operations. Under this hybrid memory framework, we presented
two different shared memory organizations and implementations associated with
them, which show that it is possible to support strong correctness conditions effi-
ciently under different sharing patterns and anticipated typical usage of memory
objects. In particular, our results show that when a lot of local activity is an-
ticipated for some of the memory objects, it is possible to implement shared
memory so that it still allows for global operations, but local operations are per-
formed more efficiently than remote ones, as it should be, while still providing
the strong correctness guarantees of linearizability.

We believe that these results contribute to the understanding of the rela-
tion between the cost of implementing distributed shared memory systems that
obey consistency conditions, and the more practical question of efficiently and
correctly supporting concurrency in a system which, naturally, performs some
blend of local and global operations.

Our lower and upper bounds shed more light on the conditions under which
each of the consistency conditions we discuss, sequential consistency and lin-
earizability, is more cost-effective. In particular, the lower bound for sequential
consistency together with the upper bound for linearizability, not only show that
our full-caching implementation is essentially optimal, but suggest a narrow gap
between these two consistency conditions with respect to the sum of the worst-
case response times for read and write operations. Since we show that this sum
depends identically on d for both sequentially consistent and linearizable caching
implementations, this implies that for “balanced” applications, i.e., applications
in which frequencies of read and write operations are quite comparable, and for
sufficiently small u, supporting linearizability is more cost-effective. This is not
- the case, however, for “non-balanced” applications, as suggested by the non-
zero lower bound on the worst-case response time for any operation ({4]) in
any linearizable implementation, and the corresponding sequentially consistent
implementations also presented in ([4]).

360

It can be easily seen that our full caching implementation allows the possibil-
1ty of self-stabilization against clock faults which might cause messages to be sent
by processes at inappropriate times: by using properties of the time-slicing tech-
nique, a process can easily detect the fault, by monitoring the presence and rate
of the “quiet” intervals, and lead the system to normal operation by re-running
the initial synchronization procedure Synch. Consequently, we believe that the
methods developed in this paper can be used in a wider context; in particular,
our algorithms and synchronization methods (more specifically, the time-slicing
technique) should be applicable to other problems in distributed computing, in
particular, to more general broadcasting and deadlock resolution problems.

The most intriguing research area suggested by this paper is that of further
investigating the hybrid memory organization. We have considered two aspects
of typical usage that one might want to take advantage of in building hybrid
mernory structure. In the case of sharing pattern, it seems quite plausible that
in some cases, one can determine in advance major trends in the sharing pattern
of the variable, but it would be interesting to investigate how to determine this
dynamically, and how to dynamically adapt to these changes. Similar questions
might be asked with respect to the frequency of read and write operations on a
given memory object; some advantage can clearly be gained by determining an
appropriate J in advance, but it is intriguing to investigate how to dynamically
adapt 2 in such situations.

While capturing the typical usage trade-off (i.e., different frequencies of read
and write operations) by developing a continuum of implementations, we only
dealt with two extreme cases of the sharing pattern of a variable. It would be
interesting to investigate the existence of intermediate linearizable protocols,
that might provide a group of processes some advantage in accessing a memory
object, while still allowing other processes to perform remote operations on them,
less efficiently, and maintain linearizability.

Acknowledgments:

We would like to thank Hagit Attiya and Roy Friedman for useful discussions
and comments. We would also like to thank the WDAG committee members for
their helpful remarks. '

361

References

1. Y. Afek, G. Brown and M. Merritt, “A Lazy Cache Algorithm,” in Proceedings of
the 1st ACM Symposium on Parallel Algorithms and Architectures, pp. 209-222,
July 1989,

2. M. Ahamad, P. Hutto and R. John, Implementing and Programming Causal Dis-
tributed Shared Memory, TR GIT-CC-90-49, Georgia Institute of Technology, De-
cember 1990. .

3. H. Attiya, “Implementing FIFO Quenes and Stacks,” in Proceedings of the S5th Work-
shop on Distributed Algorithms, pp. 80-94, Lecture Notes in Computer Science (Vol.
579), Springer-Verlag, October 1991. _

4. H. Attiya and J. Welch, “Sequential Consistency versus Linearizability,” in Pro-
ceedings of the 3rd ACM Symposium on Pavallel Algorithms and Architectures, pp.
304-315, July 1991.

5. Jean-Loup Baer and Weu-Hann Wang, “Multilevel Cache Hierarchies: Organiza-
tions, Protocols and Performance,” in Journal of Parallel and Distributed Comput-
ing, 6, pp. 451-476, 1989,

6. Q. Brown and M. Merritt, “Hierarchical Lazy Caching,” in Proceedings of the 28th
Annual Allerton Conference on Communication, Control and Computing, pp. 548-
557, October 1990.

7. M. Hexlihy and J. Wing, “Linearizability: A Correctness Condition for Concurrent
Objects,” ACM Transactions on Programming Languages and Systems, Vol 12, No.
3, pp. 463-492, July 1990.

8. P. Hutto and M, Ahamad, Slow Memory: Weakening Consistency to Enhance Con-
currency in Distributed Shared Memories, TR GIT-1CS-89/39, Georgia Institute of
Technology, October 1989.

9. L. Lamport, “How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs,” [EEE Transactions on Computers, Vol. C-28, No.9, pp.
690-691, September 1979.

10. R. Lipton and J. Sandberg, A Scalable Shared Memory, Technical Report CS-TR-~
180-88, Princeton University, September 1988,

11. 1. Lundelius and N. Lynch, “An Upper and Lower Bound for Clock Synchroniza-
tion,” Information and Control, Vol. 62, No. 2/3, pp. 190-204, Angust/September
1984.

12. M. Mavronicolas and D. Roth, “Sequential Consistency and Linearizability:
Read/Write Objects,” in Proceedings of the 29th Annual Allerton Conference on
Communication, Control and Computing, October 1991. Expanded version: ”Lin-
earizable Read/Write Objects,”, Technical Report TR-28-91, Aiken' Computation
Laboratory, Harvard University, 1991. Submitted for publication.

13. M. Mavronicolas and D. Roth, Efficient, Strongly Consistent Implementations of
Shared Memory, Technical Report TR-05-92, Aiken Computation Laboratory, Har-
vard

14. Weu-Hann Wang, Jean-Loup Baer and Henry M. Levy, “Organization and Per-
formance of a Two-level Virtual-Real Cache Hierarchy,” in Proceedings of the 16th
International Symposium on Compuler Architecture, pp. 140-148, June 1989.

Optimal Primary-Backup Protocols

Navin Budhiraja*, Keith Marzullo*, Fred B. Schneider**, Sam Toueg***

Department of Computer Science, Cornell University, Ithaca NY 14853, USA

Abstract. We give primary-backup protocols for various models of fail-
ure. These protocols are optimal with respect to degree of replication,
failover time, and response time to client requests.

1 Introduction

One way to implement a fault-tolerant service is to employ multiple sites that
fail independently. The state of the service is replicated and distributed among
these sites, and updates are coordinated so that even when a subset of the sites
fail, the service remains available.

A common approach to structuring such replicated services is to designate
one site as the primary and all the others as backups. Clients make requests by
sending messages only to the primary. If the primary fails, then a failover occurs
and one of the backups takes over. This service architecture is commonly called
the primary-backup or the primary-copy approach [1].

In [5] we give lower bounds for implementing primary-backup protocols under
various models of failure. These lower bounds constrain the degree of replication,
the time during which the service can be without a primary, and the amount of
time it can take to respond to a client request. In this paper, we show that most
of these lower bounds are tight by giving matching protocols.

Some of the protocols that we describe have surprising properties. In one
case, the optimal protocol is one in which a non-faulty primary is forced to
relinquish control to a backup that it knows to be faulty! However, the existence
of such a scenario is not peculiar to our protocol. As shown in [5], relinquishing
control to a faulty backup is indeed necessary to achieve optimal protocols in
some failure models. Another surprise is'that in some protocols that achieve
optimal response time, the site that receives the request (i.e. the primary) is
not the site that sends the response to the clients. We show that this anomaly is
not idiesyncratic to our protocols—it is necessary for achieving optimal response
time.

* Supported by Defense Advanced Research Projects Agency {(DoD) under NASA
Ames grant number NAG 2-593 and by grants from IBM and Siemens.

** Supported in part by the Office of Naval Research under contract NO0014-91-J-
1219, the National Science Foundation under Grant No. CCR-8761163, DARPA/NSF
Grant No. CCR-9014363, and by a grant from IBM Endicott Programming
Laboratory.

** Supported in part by NSF grants CCR-8901780 and CCR-9102231 and by a grant
from IBM Endicott Programming Laboratory.

383

The rest of the paper is organized as follows. Section 2 gives a specification for
primary-backup protocols, Sect. 3 discusses our system model, Sect. 4 summma-
rizes the lower bounds from [5], and Sect. 5 summarizes our results. Sections 6,
7 and 8 describe the protocols that achieve our lower bounds, and Sect. 9 de-
scribes a protocol in which the primary is forced to relinquish control to a faulty
backup. We conclude in Sect. 10. Due to lack of space, the description of some of
the protocols and all proofs are omitted from this paper. See [4] for a complete
description and proofs.

2 Specification of Primary-Backup Services

Our results apply to any protocol that satisfies the following four properties,
and many primary-backup protocols in the literature (e.g. [1,2,3]) do satisty
this characterization.

Pbl: There exists predicate Prmy, on the state of each site s. At any time, there
is at most one site s whose state satisfies Prmy,.

Pb2: Each client 7 maintains a site identity Dest; such that to make a request,
client 7 sends a message (only) to Dest;.

For the next property, we model a communications network by assuming that
client requests are enqueued in a message queue of a site.

Pb3: If a client request arrives at a site that is not the primary, then that request
is not enqueued (and is therefore not processed by the site).

A request sent to a primary-backup service can be lost if it is sent to a faulty
primary. Periods during which requests are lost, however, are bounded by the
time required for a backup to take over as the new primary. Such behavior is
an instance of what we call bofo (bounded outage finitely often). We say that
an oulage occurs at time ¢ if some client makes a request at that time but does
not receive a responsel. A (k, A)-bofo server is one for which all outages can
be grouped into at most k periods, each period having duration of at most Al
The final property of the primary-backup protocols is that they implement a
bofo-server (for some values of k and 4).

Phb4: There exist fixed and bounded values & and A such that the service behaves
like a single (k, A)-bofo server.

Clearly, Pb4 can not be implemented if the number of failures is not bounded.
In particular, if all sites fail, then no service can be provided and so the gervice
is not (k, A) for any finite & and A.

1 For simplicity, we assume in this paper that every request elicits a response.
2 Therefore, as well as being finite, the number of such periods of service outages can
occur is also bounded (by k).

364

3 The Model

Consider a system with n, sites and n. clients. Site clocks are assumed to be
perfectly synchronized with real time®. Clients and sites communicate through a
completely connected, point-to-point, FIFO network. Furthermore, if processes
(clients or sites) p; and p; are connected by a (nonfaulty) link, then we assume
for some a priori known &, a message sent by p; to p; at time ¢ arrives at p; at
somme time t' € (.4 + §].

We assume that all clients are non-faulty and consider the following types
of site and link failures: crask failures (faulty sites may halt prematurely; until
they halt, they behave correctly) 4, crash+link failures (faulty sites may crash or
faulty links may lose messages), receive—omission failures (faulty sites may crash
or omit to receive some messages), send-omission failures (faulty sites may crash
or omit to send some messages), general-omission failures (faulty sites may fail
by send-omission, receive-omission, or both). Note that link failures and the
various types of omission failures are different only insofar as a message loss is
attributed to a different component, Link failures are masked by adding redun-
dant communication paths; omission failures are masked by adding redundant
sites. As we will see, the lower bounds for the two cases are different.

Let f be the maximum number of components that can be faulty (i.e. f is
the maximum number of faulty sites in the case of crash, send—-omission, receive—
omission and general-omission failures, whereas f is the maximum number of
faulty sites and links in the case of crash+link failures).

4 Lower Bounds

In Tab. 1, we repeat the lower bounds from 5] for the degree of replication, the
blocking time and the failover time for the various kinds of failures. Informally,
a protocol is C'-blocking if in all failure—free runs, the time that elapses from
the moment a site receives a request until a site sends the associated response
is bounded by C.® Failover time is defined to be the longest duration (over all
possible runs) for which there is no primary. However, the failover time bounds
only hold for protocols that satisfy the following additional (and reasonable)
property.

Pbb: A correct site that is the primary remains so until there is a failure.

® The protocols can be extended to the more realistic model in which clocks are only
approximately synchronized [7].

* The lower bounds are also tight for fail-stop failures [10] except for the bound on
failover time.

® We assume that it takes no time for a site to compute the response to a request.

365

Table 1. Lower Bounds—Degree of Replication, Blocking Time and Failover Time

[Failure type [Replication] Blocking time {C) [Failover Time]|

Crash n, > f 0 fé
Crash+Link [|n.> f+1 0 2f6
Send-Omission ns > f Sif f=1 216
26if f>1
Receive-Omission §ifn, <2f and f=1
Th)l_%‘f'l 26ifn, <2fand f>1 216
0if ne > 2f
General-Omission| n; > 2f Sif f=1 2f6
20 f f> 1

5 Summary of Results

We first present a primary-backup protocol schema that will be used to derive
the protocols for all the failure models. This schema is based on the properties of
two key primitives, broadcast and deliver, that sites use to exchange messages.
We show that the schema satisfies Pb1—Pbb by only using these properties inde-
pendent of the particular failure model. Each failure model—crash, erash+link,
send—omission, receive-omission and general-omission—is handled with a differ-
ent implementation of broadcast and deliver, and in all but one case optimal
protocols are constructed.

The protocols for crash and crash-+link failures show that all the correspond-
ing lower bounds are tight. The protocol for general-omission failures uses a
translation technique similar to [8], and demonstrates that our lower bounds for
general-omission failures are tight, except for the bound on blocking time when
f = 1. However, for this special case we have derived a different protocol (not
described in this paper) having optimal blocking time . In all failure free runs of
this protocol, the site that receives the request (i.e. the primary) is not the site
that sends the response to the client. We show that this behavior is necessary in
this paper.

We do not show the protocols for send-omission and receive-omission fail-
ures in this paper because they are similar to the protocol for general-omission
failures. These protocols establish that the bounds for send-omission failures
are tight. For receive-omission failures, the lower bound on blocking time when
ne > 2f and the lower bound on failover time are also tight. However, our pro-
tocol does not have optimal replication, as it requires n, > 2f (rather than
ns > |¥]).

Finally, in [5] we proved that all receive-omission protocols having I_%I-J <
ng < 2f necessarily exhibit a scenario in which a non-faulty primary is forced
to relinquish control to a faulty backup. In Sect. 9, we describe such a protocol:
it uses two sites and tolerates a single receive-omission failure. In addition, this

366

protocol is -blocking and so it demonstrates that our lower bound on blocking
time is tight for ny < 2f and f = 1. As in the protocol for general omission when
J =1, it is the backup that sends responses to clients. This behavior is shown
to be necessary for an important class of protocols.

6 Protocols for the Clients and the (k, A)-bofo server

Property Pbd4 requires that the primary—backup service behave like some (k, 4)-
bofo server. Figure 1 gives such a canonical (k, A)-bofo server (say s), and Fig, 2
gives the protocol for client ¢ interacting with s. As with any other bofo server,
a client will not receive the response to a request if either the request to s or the
response from s is lost.

initialize()
cobegin
|| inform—clients(“Dest = s”)
|| do forever
when received request from client ¢
response := II(state, request)
stale = siale 0 response
send response to client ¢
ad
coend

procedure Initialize()
state 1= ¢

procedure inform—clients(ic)
send (ic) to all clients

Fig. 1. Protocol run by a single (k, A) bofo-server s

In Fig. 2, response—time corresponds to the amount of time the client has to
wait in order to get the response from s, which is just the round trip message
delay. The exact value for response—time depends on the failure model being
assumed.

7 The Primary-Backup Protocol Schema

We first make the simplying assumption that the links between the clients and
the sites are non—faulty and there are no omission failures between the clients and
the sites (i.e. only the links between sites can be faulty for crash+link failures,

367

cobegin
|| do forever
if received “Dest = s” then
Desti =3
od
i| do forever

if want to send request
send reguest to Dest;
if not received response by response-time then
recover() /* call some recovery procedure, which might retry */
else

od

- coend

Fig. 2. Protocol run by client ¢ interacting with server s

and omission failures can occur only between sites for omission failures). We
show in Sect. 7.1 how this assumption can be removed.

In order to emulate the server s (and consequently satisfy property Pb4), our
primary-backup protocol consists of n, sites {s1,...,5n,}, each of which runs
the protocol in Fig. 3. The protocol for the clients remains the same.

initialize(i)

cobegin
|| if ¢ = 0 then primary(i) elze backup(i)
|| delivery—process(i)
|| failure—detector(i)

coend

Fig. 8. Protocol run by site 8; to emulate server s

The procedures primary and backup (shown in Fig. 4) are the same for all
the failure models. On the other hand, the implementation of the procedures ini-
tialize, broadcast(used in Fig. 4), delivery—process and failure-detector
change depending on the particular failure model. However, we ensure that these
different implementations always satisfy a set of properties, called B1—B11 be-
low. We extracted these properties in order to make our proofs modular. In
particular we proved that, independent of the failure model, the protocol in
Figs. 3 and 4 satisfies Pb1-Pb5, as long as the remaining procedures satisfy
B1—B11. As a result, we could then prove Pb1-Pb5 for any other failure model

368

by just ensuring that the implementation of broadcast, delivery—process and
failure—detector for that failure model satisfied B1-B11.

procedure primary(j)
cobegin
|| inform—clients(“Dest = 3;7)
[| broadeast((mylastlog, s;, last(state;)), §) /* to all sites */
do forever
when received reguest from client ¢
response 1= II(state;, request)
state; := sigte; o response
broadecast((log, 3;, response), §)
send responase to client ¢
od
coend

procedure backap(k)
do forever
((tag, 35,7), 7) := Deq(Rqueues)
/* assume that dequeneing an empty queue
does not return any sensible value of tag */

/* synchronizing with the new primary */
if tag = mylastlog then
if r € stater then
if r = last(statey) then skip
else statex := stales \ last{stater)
else slaley 1= stateror

/* logging response from primary */
if tag = log then statey := stalex o r

/* becoming the primary */
ifV§ < k: Favltys[s;} then primary(k)
od

Fig.4. The procedures primary and backup

We now give the properties B1--B11. In these properties, d, C and 7 are some
constants whose values depend on the failure model. Intuitively, d corresponds
to the amount of time that can elapse from the time a message is broadcast to
the time it is dequeued by the receiver, C' corresponds to the blocking time and
T corresponds to the interval between successive “I am alive” messages that sites
send to each other (as we will see in the implementation of failure—detector).

369

When we say that a site “halts”, we mean that either the site has crashed or
has stopped executing the protocol by executing a stop. The array of booleans
Faulty, indicates which servers s; believes has halted: Faultyg[s;] being true
implies sy believes that s; has halted. Finally, we define a broadcast by a site to
be successful if the site does not halt during the execution of broadcast.

The properties can be subdivided according to the procedures to which they
relate:

Properties of broadcast and delivery—process:

Bl: If s; initiates a broadcast b’ after broadcast &, then no site dequeues b’
before b.

B2: If 5; initiates a broadcast b at time ¢, then no site dequeues b after time
t+d.

B3: If s; initiates a broadcast at time ¢ and does not halt by time ¢ + C, then
the broadcast is successful. Furthermore, no broadcast takes longer than C
to complete.

Properties of failure—detector:

B4: If Faulty;[sg) becomes true, then it continues to be true, unless s; halts.

B5: The value of Faulty;[s;] can only change at time ¢ = 7 4 d for some integer
1>0.

B6: If Faulty;[si] = true at time ¢ then s; has halted by time ¢.

B7: If s; has not halted by time ¢, and s, i < j has halted by time ¢; where
t; =ty + 7 + d, then Faulty;[s;] = true by time t;.

Properties of broadcast and delivery—process interacting with failure—de-
tector:

B8: No correct site halts in procedures initialize, broadcast, delivery—process
or failure—detector. _

B9: If s; initiates a successful broadcast at time £, then for all non—halted sites
sk, k > j, Faultyy[s;] = false through time [£]r + d.

B10: If s; initiates a successful broadcast b, then for every non-halted site s4:
(Faultyr[s;] = true) = (s; has dequeued b). '

B11: If s; initiates a broadcast b at time ¢ and sz, k > j broadcasts b’, then
either no site dequeues b after ¥, or Faulty[s;] = false through time t 4+ d.

7.1 Outline of the Proof of Correctness

We now informally argue that the protocol in Figs. 3 and 4 satisfies Pb1-Pbb as
long as the procedures initialize, broadcast, delivery—process and failure-
detector satisfy B1—B11.
Define: Primy,, at time ¢ = 5; has not halted by time ¢
AVEk < j: Faulty;{s;] = true at time {.
From the above definition, Pbl can now be seen from B6 and the backup
protocol in Fig. 4. Pb2 trivially follows from Fig. 2. Pb3 follows from Fig. 4 as

370

no request is sent to a site s; before s; becomes the primary. Also, Pb5 holds
(from B8 and Fig. 4) as a correct primary continues to be the primary. We now
show Pb4. '

In order to show Pb4, we need to show two things-the state of the new
primary is congistent with the state of old primary; and all outages are bounded.
We first show that the states are consistent.

Starting at the top of Fig. 4: when a site s; becomes the primary, it first
informs the clients of its identity by calling inform—clients. For now, ignore
the broadcast of (mylastlog,s;,—) by primary s;.

Whenever s; gets a request from a client, it computes the response, changes
state, broadcasts the log to the backups and sends the response back to the
client. It can be seen from Fig. 4 that if primary s; sends a response r to the
client, then s; must have executed a successful broadcast of (Log, 5,). This fact
and properties B1,B2,B9 and B10 imply that (1og, s;,r) must also have been
dequeuned by any backup s, before s3 becomes the primary. Thus, the state of sy
will continue to be consistent with the state of s; iff the states were consistent
when s; became the primary. We show this as follows.

Informally, the states of s; and s; could be inconsistent when s; becomes
the primary for the following reason. Consider a scenario in which some primary
s¢ crashes during the broadcast of (log,s;,r) for some r. It is possible that s
received (log, s;,) and s; did not. As a result, the states of s; and s; now differ.
It is for this reason that s; broadcasts {(mylastlog, s;, ') where #' = last(state;)
on becoming the primary. On receiving this, s; sees that v' # last(state;) =
r and removes r from its state. As a result, state; and state; become equal.
Similarly, s, would add r to its state had s;, and not s, received (log, s;, 7).

In the scenario described in the last paragraph, response r is never sent to
the client (i.e. there is a service outage). We now show that such outages are
bounded. s; did not send the response, and so by B3, must have halted by time
t (say). Now from BT either s;4, halts or becomes the primary by time ¢ + 7 + 6.
Since no correct site halts (by B8 and Fig 4), and the number of faulty sites are
bounded by f, there eventually will be a time when there is a correct primary
and no more outages occur.

From B3, the protocol C-blocking. Furthermore, it can be shown from B7,
B8 and Fig. 4 that the failover time of the protocol is f(d + 7) for arbitrarily
small and positive T.

However, the primary procedure in Fig. 4 does not work if there are message
losses between the clients and the sites (due to link or omission failures). For
example, a non-faulty primary might omit to receive all requests from a client
due to a failure, violating Pb4. Similarly, inform—clients might omit to inform
some of the clients. However, it is relatively easy to account for these failures
when clients are non-faulty. Assume that there is an upper bound (say G) be-
tween any two requests from a client and that requests carry sequence numbers.
If the primary does not receive any requests from a client during an interval of
length G or if the primary receives some request with a sequence number gap,
then the primary halts. Similarly, the primary can detect that a response was

3an

lost by having clients acknowledge responses. If such an acknowledgement is not
received, then again the primary halts. Properties Pb1-Pb5 can again be shown
to be true if we make the above modification in Figs. 2 and 4.

8 Implementation for the various Failure Models

In this section, we show how to implement B1—B11 for the various failure mod-
els.

8.1 Crash Failures

The procedures implementing B1-—B11 for crash failures are given in Fig. 5.
Whenever we say that a site “delivered M”, we mean that the procedure deliver
has been called with M. Enq adds an element to the head of a queue and Deq
dequeues an clement from the tail.

procedure initialize(k)
statey = Rqueuey :=¢
¥i: Faultyg[s:] := false

procedure broadcast(M, k)
send M to all sites

procedure deliver (M, k)
Let M be of the form (tag, —, —)
if tag € {log, mylastlog} then Enq(Rqueuck, (M, k))

procedure delivery—process(k)
do forever _
if received M then deliver(M, k)
od

procedure failure—detector(k)
cobegin
|| for i :=0 to co
when current—time = ir: send (alive, sk, i) to all sites
|| for i:=0to
when current-time = it + d:
¥j : If not delivered (alive,s;,i7) then Faultyx[s;] 1= true
coend

Fig. 5. Procedures for crash failures

372

We now informally argue that B1--B11 hold for this implementation if d = 6
and C' = 0. Bl holds as channels are FIFO and, B2 holds as d = ¢ and the
maximum message delivery time is also §. B3, B4 and Bb can be seen trivially.
B6 and B7 can be seen from failure—detector as there are no message losses
and message delivery time is atmost §. B8 holds trivially. It can be shown that
if 5; halts at time ¢, then no site sets Fauliy[s;] to true before time ¢ + 6. B9,
B10 and B11 now follow.

The procedures in Fig. 5 require n; > f, and so the lower bound on the
degree of replication is tight. Since C' = 0 and d = §, from Sect. 7.1, the lower
bounds on blocking time and failover time are tight as well.

8.2 Crash+Link Failures

The procedures in Sect. 8.1 do not work if links can fail. For example, if s;
sends a message to s, then the message might not reach s; due to a link failure
(which will violate B6 and B10). We therefore replace the implementation in
Fig. 5. with the one in Fig. 6, except that deliver is the same as before. For
this implementation, d = 26 and C = 0. These procedures use fifo—broadcast
and fifo~deliver in Fig. 7 which ensure that intermittent link failures become
permanent failures: if s; fifo-broadcasts a message m to sy and sz omits to
fifo-deliver m, then s; will not fifo-deliver any subsequent message from s;.

It can be shown (proof omitted) that this new implementation again satisfies
B1-B11 if n, > f+ 1. Informally, this is true because of the following reason.
Whenever s; initiates a broadcast of M at time ¢, it sends M to all sites, and the
sites then relay M to all other sites, Since n, > f+ 1, there is always at least one
non-faulty path between any two non-crashed sites, where a path cousists of zero
or one intermediate sites. Therefore, if s; does not crash during the broadcast,
then all non-crashed sites will deliver M by time ¢ -+ 28, Furthermore Bl will be
satisfied because of the FIFO properties of fifo-broadcast and fifo—deliver.

This crash-+link protocol requires ny > f + 1, is 0-blocking (since C = 0),
and has a failover time of f(26 + 7) (since d = 26). Thus, all lower bounds for
crash-+link failures are tight.

8.3 General-Omission Failures

‘The implementation of the procedures for general-omission failures is given in
Figs. 8 and 9, except delivery—process which is the same as Fig. 6, Whenever,
we say that a site “fifo—delivered M”, we mean that the procedure fifo--deliver
was called with M. These procedures were developed using a technique similar
to [8] (although modified to work in our non-round-based model) which requires
ng > 2f and d = 26. '

373

procedure initialize(k)
statex = Rgueuey 1= Dqueuer := ¢
Vi : Faultyr[s;] := false
last-senty := ¥j :expectedi[j] 1= 0

procedure broadcast(M, k)
time ;=current-time
fifo-broadcast(init, M, sx, time)

procedure delivery-process(k)
cobegin
|| fifo-delivery-process(k)
[| do forever
(tag, M, —, 1) :=Deq(Dquene)
if tag = init then fifo-broadeast (echo, M, sk, 1)
if tag = echo and not dequeued (tag, M, —,t) before then deliver (M, k)
od
coend

procedure failure—-detector(k)
' A; = (alive, 8;, it)
cobegin
jl for i :=0to o0
when current-time = ir: fifo-broadcast(init, A}, sk, ir)
[| for 1 := 0 to oo
when current—time = ir + d:
¥j : if not delivered A} then Faultyx(s;] := true
coend

Fig. 6. Procedures for crash-+link failures

procedure fifo-broadcast(tag, M, sk, 1)
send (teg, M, si,t,last-senty) to all
last-genty :=last-geniy + 1

procedure fifo-deliver (tag, M, s;,t)
Enq(Dgueuex, (tag, M, s;,t))

procedure fifo-delivery—process (k)
do forever
if received (tag, M, 35,1, 1ast;) then
if (last; #expectedifj]) then skip
else
ezpectedy[f] 1= ezpectedi[7] + 1
fifo-deliver (tag, M, 3;,1)
od

Fig. 7. Procedures for crash+link failures

374

procedure initialize(k)
statex = Rquener := Dguener 1= ¢
Vi: Faultyx[si] := false
current-primary:=last-genty 1= Vj :expectedy[s] :== 0

procedure broadcast(M, k)
time := current—time
fifo-broadeast(init, M, sx, time)
if by time + d fifo-delivered (echo, M, s;, time)
for at least n, — f different j then return
else stop

procedure deliver (M, k)
Let M be of the form (tag, s;,—)
if tag € {log, mylastlog) then
if § <current-primary then return
else
current-primary.= j
Enq(Rqueunes, (M, k)

Fig. 8. Procedures for general-omissior failures

We now briefly argue that these procedures satisfy B1—B11. The detailed
proof is omitted from this paper. Had we used the implementation of broadcast
in Fig. 6, B10 (in particular) would be violated because a faulty primary s;
might omit to send the logs to the backups. Therefore, in Fig. 8, s; stops in
the broadcast of a response (say r) if less than n, — f sites fifo~deliver and
subsequently fifo-broadcast r. However, even if s; does not stop in the broadcast,
a faulty (but non-crashed) site s, might still omit to deliver », due to a receive-
omission failure, and later become the primary were s; to fail. To prevent this, sp
ensures (in procedure failure-detector) that it fifo-delivers some message (say
m') from at least one of the above n, — f sites that had earlier fifo-broadcast . If
sx does not receive such an m/, then sy stops. Now, if s; omitted to fifo-deliver
r, then by the properties of fifo-broadcast and fifo—-deliver, s, cannot fifo—deliver
m’ and would stop (and, therefore, cannot become the primary). Property B6
is similarly satisfied by ensuring that sites detect their own failure to send or
receive alive messages and therefore stop.

These procedures require ny > 2f, d = 26 and C = 26. Furthermore, we have
developed a protocol for f = 1 (omitted in this paper) that is §-blocking, Thus,
we establish that all lower bounds for general-omission failures are tight.

As mentioned earlier, the 6—blocking protocol for f = 1 has scenarios in which
the site that receives the request is not the site that responds to the clients. This
is in fact necessary. Define a protocol to be “pass the buck” if in any failure—free
run of the protocol, the site that receives a request is not the site that sends the
corresponding response.)

375

procedure failure-detector(k)
¥i,j : A} := (alive, 55, iT)
Vi, 7 1 F} = (fault, s;,1i7)
cobegin
|| for i :=90 to oo '
when curreni-time = ir: fifo-broadcast(init, Ay, sk, i7)
|| for i := 0 to oo
when current-time = i1 + §:
¥y : if not fifo—delivered (ix}it,A;,S‘j, ir} then
fifo-broadcast (echo, Fy, 3k, 1)
|| for i:=0 to co
when current-time = it + d:
witnessy[k] := {s;lfifo-delivered {echo, A},s;,i7)}
¥j # k : witnessk[j] := {silfifo—delivered (eche, A}, 8i,iT) or
fifo-delivered (echo, F}, 8i,i7)}
if 35 : |witnessk[s]| < n; — f then stop
if 3 : not delivered A; then Faultys[s;] := true
coend

Fig. 9. Procedures for general-omission failures

Theorem 1. Any C-blocking protocol, where C < 28, for send-omission failures
is “pass the buck”.

Proof. Omitted in this paper. See [4]. : o

8.4 Other Failure Models

The implementations of the procedures for send-omission and receive-omission
failures are similar to those for general-omission failures and so are omitted
from this paper. For receive-omission failures, the lower bound on the degree
of replication and the lower bound on blocking time when ny < 2f and f > 1
are not tight. Finding optimal protocols remains an open problem. However, the
lower bound on failover time for receive-omission failures, and all lower bounds
for send-omission failures are tight.

9 A Surprising Protocol

We now describe a §-blocking protocol tolerating receive-omission failures for
the special case of ny = 2 and f = 1. This protocol is complex, and so we omit
the detailed description and only outline the protocol’s operation here. This
protocol shows that our lower bound on blocking time when ny < 2f and f =1
is tight. The protocol has the odd (yet necessary as shown in [5]) property that
a non-faulty primary is forced to relinquish to a faulty backup. Furthermore, the
protocol is “pass the buck”. We, however, show that most é-blocking protocols
tolerating receive omission failures have to be “pass the buck”.

376

Informally, let I' be the maximum time between any two successive client
requests (possibly from different clients), and let I? be such that if some site s
becomes the primary at time ¢p and remains the primary through time{ > ¢+
when a client 7 sends a request, then Dest; = s at time ¢. We write D < I' to
mean that D is bounded and I' is either unbounded or bounded and greater
than 1. Then

Theorem 2. Any C-blocking protocol, where C' < 28, for receive-omission fail-
ures with ng < 2f and D < I' is “pass the buck”.

Proof. Omitted from this paper.]

Whether a protocol has to be “pass the buck” when the relation D < I' does
not hold is an open question.

We now describe the protocol. There are two sites sg and s;. They commu-
nicate with each other using fifo—broadcast and fifo—deliver shown in Fig. 7.
Henceforth, when we say that a site sends a message to the other, we will mean
that the message is sent with fifo-broadcast and other site receives it with
fifo-deliver.

In a failure-free run of this protocol, since the backup responds to the client,
the primary forwards any response to the backup (with a green tag as we see
below) and the backup sends this response to the client. However, if there is
a failure, then the primary responds to the clients. In this case, the primary
forwards a response to the backup with a red tag. The backup does not forward
a response to the client if the response has a red tag.

Let sy initially be the primary. Whenever sy receives a request from the
client, it computes a response r, changes state, and sends (green,r) to s;. Upon
receiving this message, s; updates its state, acknowledges to sg, and then sends
r to the client. Because it is the backup that responds to the client, the protocol
is é—blocking. Site sy processes a new request only after receiving the acknowl-
edgement from s; for the previous request. Finally, sy periodically sends alive
messages to 8, and §; acknowledges these messages.

Suppose that sy does not get s,’s acknowledgement for some message, say,
{green,r) (the argument is similar if no acknowledgement is received for an
alive message). There are three possibilities: (1) s; has crashed, (2) s; omitted
to receive (green,r) and so did not send the acknowledgement, (3) so omitted to
receive the acknowledgement. g now waits until it is supposed to send the next
alive message. sp sends this alive message and waits for an acknowledgement.
We now consider the above three cases separately.

Case 1: 5; has crashed. As a result, s¢ does not receive the acknowledgement
to the alive message. 8o continues as the primary. From then on, whenever s
receives a request from the client, it computes the response r, sends (red,r) to
s1, and then sends the response back to the client. Also, s¢ continues to send
alive messages. Since sy is correct, it can continue like this forever.

Case 2! sy is faulty and omitted to receive (green,r). By the property of fifo—
broadcast and fifo—deliver, s; will not receive the alive messages that sy sends.

377

8, concludes that so has crashed, sends {“s; is primary”} to sy and becomes the
primary. After that, it behaves like sg in case 1 above (including sending alive
messages to so). Since sg is correct, it receives (“s) is primary”) (as opposed to
case 1) and so it becomes the backup. Also, since s¢ is correct it will not omit
to receive (red,r) messages that sy sends and so so keeps its state consistent
with s;. Subsequently, if 5o stops receiving alive messages from &1, then s, has
crashed and sy becomes the primary once again,

Case 31 sp 18 faulty. Since 51 15 correct, it receives the alive message from sg,
gends the corresponding acknowledgement and remains the backup (as opposed
to case 2). However, by the property of fifo-broadcast and fifo-receive, so will
not receive this acknowledge to the alive message (or the (“sy is primary”)
message), and so it behaves as in case 1 and continues as the primary. Similar to
case 2, s) receives all (red,r) messages that sy sends and so its state is consistent
with sp. Finally, s; becomes the primary if it stops receiving alive messages
from sg.

Case 2 in the protocol is the odd scenario in which the correct primary s
is being forced to relinquish to s;, known to be faulty. However, this scenario is
not something peculiar to our protocol. We showed in {5] that relinquishing to a
faulty backup is necessary when n, < 2f.

10 Discussion

In [5], we present lower bounds for primary-backup protocols which constrain
the degree of replication, the failover time, and the amount of time it can take
to respond to a client request. In this paper, we derive matching protocols and
show that all except two of these lower bounds are tight. Furthermore, we show
that in some cases the optimal response time can only be obtained if the site
that receives the request is not site that sends the response to the clients.

We have attempted to give a characterization of primary-backup that is broad
enough to include most synchronous protocols that are considered to be instances
of the approach. There are protocols, however, that are incomparable to the class
of protocols we analyze as these protocols were developed for an asynchronous
system [6,9]. We are currently studying possible characterizations for a primary-
backup protocol in an asynchronous system and expect to extend our results to
this setting.

References

1. P.A. Alsberg and J.D. Day. A principle for resilient sharing of distributed resources.
In Proceedings of the Second International Conference on Software Engineering,
pages 627-644, October 1976,

2. J.F. Barlett. A nonstop kernel. In Proceedings of the Eighth ACM Symposium on
Operating Systemn Principles, SIGOPS Operating Systemn Review, volume 15, pages
22-29, December 1981.

10.

378

Anupam Bhide, E.N. Elnozahy, and Stephen P. Morgan. A highly available net-
work file server. In USENIX, pages 199-205, 1991.

. Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Optimal

primary-backup protocols. Technical report, Cornell University, Ithaca, N.Y.,
1992. In preparation,

Navin Budhiraja, Keith Marzullo, Fred B. Schuneider, and Sam Toueg. Primary-
backup protocols: Lower bounds and optimal implementations. In Proceedings of
the Third IFIP Working Conference on Dependable Computing for Critical Appli-
cations, 1992. To Appear.

Timothy Mann, Andy Hisgen, and Garret Swart. An algorithm for data replication.
Technical Report 46, Digital Systems Research Center, 1989,

. Gil Neiger and Sam Toueg. Substituting for real time and common knowledge

in asynchronous distributed systems. In Sizth ACM Symposium on Principles of
Distributed Computing, pages 281-293, Vancouver, Canada, August 1987. ACM
SIGOPS-SIGACT.

. Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of dis-

tributed systems. In Proceedings of the Seventh ACM Symposium on Principles
of Distributed Computing, pages 248-262, Toronto, Ontario, August 1983, ACM
SIGOPS-81GACT.

_ B. Oki and Barbara Ligkov. Viewstamped replication: A new primary copy method

to support highly available distributed systems. In Seventh ACM Symposium on
Principles of Distributed Computing, pages 8-17, Toronto, Ontario, August 1988.
ACM SIGOPS-SIGACT.

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems, 1(3):222-238, Augnst 1983.

List of Referees

Afek, Y, Merritt, M.
Attiya, H. Moran, S

Bar Noy, A. Moses, Y.
Bougé, L. Orda, A.
Budhiraja, N. Papatriantafillou, M.
Cahn, RS. Pati Shamir, B,
Chandra, T. Peleg, D.
Coan, B. Rhee, L
Dolev, D. Sandoz, A.
Dolev, S. Santoro, N.
Dwork, C. Schiper, A.
Garay, J. Schoone, A.
van Haaften, P. Smith, D.
Jayanti, P. Spirakis, P.
Kirousis, L. Taubenfeld, G.
Kosa, M. Tel, G.
Kutten, S. Toueg, S.
Kumar, S. Tsigas, P,
Mansour, Y. Welch, J.

Mayer, A. Zaks, S.

List of Authors

Afek, Y. 1,85
Amir, Y, 292
Anagnostou, E, 203
Anderson, J.H. 313
Attiya, H. 35
Awerbuch, B. .. 185
Bar-Ilan, J. 277
Bazzi, R. 166
Berman, P. 221
Birman, K. 329
Budhiraja, N, .. 362
Cidon, 1., 264
Dolev, D. 292
El-Yaniv, R. ... 203
Gafni, E. 85
Garay, J.A. 153,221
Garofalakis, J. . 110
Gouda, M.G. .. 313
Greenberg, D.S. b4
Hadzilacos, V. . 203
Herlihy, M. 35
Israeli, A. 95,136
Jayanti, P., : 69
Kortsarz, G. ... 238
Kramer, S. 202
Kranakis, E. ... 253
Lubitch, R. 11
Malki, D. 292

Mansour, Y. ... 185

Marzullo, K. 362
Mavronicolas, M. 346
Moran, S. 11
Neiger, G. 166
Peleg, D, 238,277
Perry, K.J. 153,221
Pinhasov, M. 95
Pinter, S. 136
Ponzio, S. 120
Rachman, O, 35
Rajsbaum, S. ... 110
Ricciardi, A, 329
Ricklin, M. 1
Roth, D. 346
Santoro, N, 253
Schneider, F. 362
Shavitt, Y. 264
Spirakis, P. 110
Stephenson, P. ., 329
Strong, R. 120
Tampakas, B. ... 110
Taubenfeld, G. .. 54
Toueg, S. 69,362
Tromp, J. 85
Vitanyi, PM.B. . 85
Wang, D.-W. .., b4
Yang, J.-H. 313
Zamsky, A. 136

Lecture Notes in Computer Science

For information about Vols. 1-339

please contact your bookseller or Springer-Verlag

Vol. 560: S. Biswas, K. V. Nori (Eds.), Foundations of Soft-
ware Technology and Theoretical Computer Science, Procced-
ings, 1991. X, 420 pages. 1991.

Vol, 561: C. Ding, G. Xiao, W, Shan, The Stability Theory of
Stream Ciphers. 1X, 187 pages. 1991,

Vol. 562: R. Breu, Algebraic Specification Techniques in Ob-
jeet Oriented Programming Environments. X1, 228 pages. 1991

VYol. 563 A. Karshmer, J. Nehmer {Eds.), Operating Systems
of the 9¥0s and Beyond. Proceedings, 1991, X, 285 pages. 1991,

Vel. 564: 1. Herman, The Use of Projective Geometry in Com-
puter Graphics. VIII, 146 pages. 1992,

Vol. 565: J. D. Becker, L. Eisele, . W. Miindemann (Eds.), Par-
allclism, Learning, Evolution. Proceedings, 1989, V1M, 525
pages. 1991 (Subseries LNAIL).

Vol. 566: C. Delobel, M. Kifer, Y. Masunaga (Eds.), Deductive
and Object-Oriented Databases. Proceedings, 1991, XV, 581
pages. 1991,

Yol. 567: H. Boley, M. M., Richter (Eds.), Processing Declara-
tive Kowledge. Proceedings, 1991. X1I, 427 pages. 1991,
{Subserics LNAD.

Vol. 568: H.-J. Bitrckert, A Resolution Principle for a Logic
with Restricted Quantifiers. X, 116 pages. 1991 {Subseries
LNAI).

Vol. 569: A. Beaumont, G. Gupta (Eds.), Parallel Execution of
Logic Programs, Proceedings, 1991. VII, 195 pages. 1991.
Vol. 570: R. Berghammer, G. Schmidt (Eds.), Graph-Theoretic
Congepts in Computer Science. Proceedings, 1991, VIIL, 253
pages. 1992,

Vol 571: J. Vytopil (Ed.), Formal Technigues in Real-Time
and Fault-Tolerant Systems. Proceedings, 1992, IX, 620 pages.
1991,

Val. 572: K. U. Schulz (Ed.), Word Equations and Related Top-
ics. Proceedings, 1990, V1L, 256 pages. 1992,

Vol. 573: G. Cohen, S. N. Litsyn, A, Lobstein, G. Zémor {Eds.),
Algebraic Coding. Proceedings, 19914, X, 158 pages. 1992.
Vol. 574: 1, P. Banfitre,). Le Métayer {Eds.), Research Direc-
tions in High-Level Parallel Programming Languages. Proceed-
ings, 1991, VIIL, 387 pages. 1992,

vol. 575: K. G. Larsen, A. Skou (Eds.), Computer Aided Veri-
fication. Proceedings, 1991, X, 487 pages. 1992,

Vol. 576: 1. Feigenbaum (Ed.), Advances in Cryptology -
CRYPTO 91, Proceedings. X, 485 pages. 1992.

Vol, 577: A. Finkel, M. Jantzen (Eds.}, STACS 92. Proceed-
ings, 1992. XTV, 621 pages, 1992,

Vol 578: Th. Beth, M. Frisch, G. J. Simmons (Eds.), Public-
Key Cryptography: State of the Art and Future Directions. X1,
97 pages. 1992,

Vaol. 579: §. Toueg, P. G. Spirakis, L. Kirousis (Eds.), Distrib-
uted Algorithms. Proceedings, 1991, X, 319 pages. 1992.

Vol. 580: A. Pirotie, C. Delobel, G. Gottlob (Eds.), Advances
in Database Technology — EDBT '92, Proceedings. XL, 554
pages. 1992,

Vol. 581: J.-C. Raoult (Bd.), CAAP '92. Procecdings. VIIL, 361
pages. 1992,

Vol. 582: B, Krieg-Briickner (Ed.), ESOP'92. Proceedings. VIII,
491 pages. 1992.

Vol. 583: L. Simon (Ed.), LATIN '92. Proceedings. 1X, 545 pages.
1992,

Vol. 584: R. E. Zippel (Bd.), Computer Algebra and Parallel-
ism. Proceedings, 1990. IX, 114 pages, 1992

Vol, 585: F. Pichler, R. Moreno Diaz (Eds.}, Computer Aided
System Theory - EUROCAST ‘91, Proceedings. X, 701 pages.
1992.

Vol. 586: A. Cheese, Paralkel Execution of Parlog. 1X, 184 pages.
1992,

Yol. 587: R. Dule, E. Hovy, D. Risoer, 0. Stock {Eds.), As-
peets of Automated Natural Language Generation. Proceedings,
1992, VIIT, 311 pages. 1992. (Subseries LNAD,

Vol. $88: G, Sandini (Ed.), Computer Vision — ECCYV '92. Pro-
ceedings, XV, 909 pages. 1992.

vaol. 589: U, Banegjee, D, Gelernter, A. Nicolau, D. Padua{Eds.),
Languages and Compilers for Parallel Computing. Proceedings,
1991, 1X, 419 pages. 1992,

Vol. 5901 B. Fronhdfer, G. Wrightson (Eds.), Parallelization in
Inference Systems. Proceedings, 1990. VIII, 372 pages. 1992
(Subseries LNAI).

Yol 591: H. P. Zima {Ed.), Parallel Compusation. Proccedings,
1991, IX, 451 pages. 1992,

Vol 592: A. Voronkov (Ed.), Logie Programming. Proceed-
ings, 1991. IX, 514 pages. 1992, (Subseries LNAI).

Vol. 593: P. Loucopoules (Ed.), Advanced Information Sys-
lems Engincering. Proceedings. X1, 650 pages. 1992.

Vol. 594: B. Monien, Th, Ostmann (Eds.), Data Structures and
Efficient Algorithms, V1iL, 389 pages. 1992,

Vol. 595: M. Levene, The Nested Universal Relation Database
Model. X, 177 pages. 1992.

vol. 596: L.-H. Friksson, L. Hallnis, P. Schroeder-Heister
(Eds,), Extensions of Logic Programming. Proceedings, 1991,
VII, 369 pages. 1992, (Subseries LNAD.

Vol. 597: H, W. Guesgen, J. Hertzberg, A Perspective of Con-
straint-Based Reasoning. VIIL, 123 pages. 1992, (Subseries
LNATD.

Vol. 598: S. Brookes, M. Main, A, Mclten, M. Mislove, D.
Schmidt {Eds.), Mathemasical Foundations of Programming
Semantics. Praceedings, +991. VIIL, 506 pages. 1992,

. Vol. 599: Th. Wetter, K.-D. Althoff,). Boose, B. R. Gaines, M,

Linster, F. Schmalhofer (Eds.), Current Developments in
Knowledge Acquisition - EKAW 92, Proceedings. X1, 444
pages. 1992, (Subseries LNAI),

Vol. 600: J. W. de Bakker, C. Huizing, W. P. de Roever, G.
Rozenberg (Bds.}, Real-Time: Theory in Practice. Proceedings,
1991, VIIL, 723 pages. 1992,

Vol. 601: D, Dolev, Z. Galil, M. Radeh (Eds.), Theory of Com-
puting and Systems. Proceedings, 1992, VIIL, 220 pages. 1992.

Vol. 602: 1. Tomek (Ed.}, Computer Assisted Learning. Pro-
ceedings, 1992. X, 615 pages, 1992, .

Vol. 603: J. van Katwijk (Ed.), Ada: Moving Towards 2000.
Proceedings, 1992. VIII, 324 pages. 1992.

Vol. 604: F, Belli, F.-J. Radermacher (Eds.), Industrial and
Engineering Applications of Artificial Intelligence and Expert
Systems. Proceedings, 1992. XV, 702 pages. 1992, (Subseries
LNAI).

Vol. 605: D. Etiemble, J.-C. Syre (Eds.), PARLE *92. Parallel
Architectures and Languages Europe. Proceedings, 1992. XVIJ,
984 pages. 1992,

Vol. 606; D. E. Knuth, Axioms and Hulls. IX, 109 pages. 1992.

Vol. 607: D, Kapur (Ed.), Automated Deduction — CADE-11.
Proceedings, 1992, XV, 793 pages. 1992. (Subseries LNAI).

Vol. 608: C. Frasson, G. Gauthier, G, I, McCalla (Bds.), Intelli-
gent Tutoring Systems. Proceedings, 1992, X1V, 686 pages.
1992,

Vol. 609: G, Rozenberg (Ed.), Advances in Petri Nets 1992,
VIIL, 472 pages. 1992,

Val. 610: F, von Martial, Coordinating Plans of Autonomous
Agents. XII, 246 pages. 1992, (Subseries LNAT).

Vol. 611: M. P. Papazoglou, J. Zeleznikow (Eds.), The Next
Generation of Information Systems: From Data to Knowledge.
VI, 310 pages. 1992. (Subseries LNAI).

Yol. 612: M. Tokore, O, Nierstrasz, P. Wegner (Eds.), Object-

Based Concurrent Computing, Proceedings, 1991. X, 265 pages.
1992.

Vol. 613: 1. P, Myers, Jr., M.]. O*Dounell {Eds.), Constructivity
in Computer Science. Praceedings, 1991, X, 247 pages. 1992,
Vol. 614: R, G. Herrtwich (Ed.}, Network and Operating Sys-
tem Support for Digital Audio and Video, Proceedings, 1991,
XiL, 403 pages. 1992

Vol. 615: O. Lehrmann Madsen (Ed.), ECOOP *92. European
Conference on Object Oriented Programming, Proceedings. X,
426 pages. 1992,

Yol. 616: K. Jensen (Ed.), Application and Theory of Petri Nets
1992, Proceedings, 1992. VIII, 398 pages. 1992,

Vol. 617: V. Mafik, Q, §1&pankové, R. Trappl {Eds.), Advanced
Topics in Artificial Intelligence, Proceedings, 1992. 1X, 484
pages. 1992, (Subseries LNAI).

Vol. 618: P. M. D. Gray, R, I. Lucas (Bds.), Advanced Database
Systems, Proceedings, 1992. X, 260 pages. 1992,

Val. 619: D. Pearce, H. Wansing (Eds.), Nonclassical Logics
and Information Proceedings. Proceedings, 1990. VIE, 171 pages.
1992, (Subseries LNAI).

Vol. 620: A. Nerode, M. Taitslin (Eds.), Logical Foundations of
Computer Science - Tver '92, Proceedings. IX, 514 pages. 1992.
Vol. 621: 0. Nurmi, E. Ukkonen (Eds.), Algorithm Theory -
SWAT 92, Proceedings. VIII, 434 pages. 1992,

Vol. 622: F. Schmaihofer, G. Strube, Th. Wetter (Eds.), Con-
temporary Knowledge Engineering and Cognition. Proceedings,
1991, XII, 258 pages. 1992, (Subscries LNAI).

Yol. 623: W. Kuich {Ed.), Automata, Languages and Program-
ming. Proceedings, 1992. XII, 721 pages. 1992.

Vol. 624: A, Voronkov (Ed.), Logic Programming and Auto-
mated Reasoning. Proceedings, 1992. X1V, 509 pages. 1992,
(Subseries LNAT). :

Vol. 625; W. Vogler, Modular Construction and Partial Order
Semantics of Petri Nets, 1X, 252 pages. 1992.

Vol. 626: E. Bérger, G. Jiger, H. Kleine Biining, M. M . Richter
(Eds.), Computer Science Logic. Proceedings, 1991. VIII, 428
pages. 1992,

*Vol. 628: G. Vosselman, Relational Matching. IX, 190 pages.

1992,

Vol. 629: 1. M. Havel, V. Koubek (Eds,), Mathematical Foun-
dations of Computer Science 1992, Proceedings, IX, 521 pages.
1992,

Vol. 630: W. R, Cleaveland (Ed,), CONCUR '92, Proceedings,
X, 580 pages. 1992,

Vol. 631; M. Bruynooghe, M. Wirsing (Eds.), Programiming Lan-
guage Implementation and Logic Programming, Proceedings,
1992, XI, 492 pages. 1992,

Vol. 632: H. Kirchner, G. Levi (Eds.), Algebraic and Logic Pro-
gramming. Proceedings, 1992, TX, 457 pages. 1992.

Vol. 633: D, Peurce, G. Wagner (Eds.), Logics in Al Proceed-
ings. VIIIL, 410 pages. 1992, (Subseries LNAT.

Vol, 634: L. Bougé, M. Cosnard, Y. Robert, D. Trystram (Eds.),
Parallel Processing: CONPAR 92 - VAPP V. Proceedings. XVII,
853 pages. 1992,

Vol, 635: J. C. Derniame (Ed.), Software Process Technology.
Proceedings, 1992. VIII, 253 pages. 1992.

Vol. 636: G. Comyn, N. E, Fuchs, M. I. Ratcliffe (Eds.), Logic
Programming in Action. Proceedings, 1992, X, 324 pages. 1992,
(Subseries LNAI).

Vol. 637: Y. Bekkers, J. Cohen (Eds,), Memory Management.
Proceedings, 1992. XI, 525 pages. 1992,

¥ol. 639: A. U, Prank, I. Campari, U. Formentini (Eds.), Theo-
ries and Methods of Spatio-Temporal Reasoning in Geographic
Space. Proceedings, 1992, XI, 431 pages. 1992,

Vol. 640: C, Sledge (Ed.), Software Engineering Education.
Proceedings, 1992, X, 451 pages. [992. '

Vol, 641: 1. Kastens, P, Pfahler (Eds.), Compiler Construction.
Proceedings, 1992. VII1, 320 pages. 1992,

Vol. 642: K. P. Jantke (Ed.), Analogical and Inductive Infer-
ence. Proceedings, 1992, VIII, 319 pages. 1992, (Subseries
LNAI}.

Vol. 644: A, Apostolico, M. Crochemore, Z. Galil, U. Manber
{Eds.}, Combinatorial Pattern Matching, Proceedings, 1992, X,
287 pages. 1992

Vol. 645: G. Pernul, A M. Tjoa (Eds.}, Entity-Relationship
Approach - ER '02. Proceedings, 1992, XI, 439 pages, 1992,
Vol. 646: 1. Biskup, R. Hull (Eds.), Database Theory - ICDT
'92. Proceedings, 1992, IX, 449 pages, 1992.

Vol. 647: A, Segall, S. Zaks (Eds.), Distributed Algorithms, X,
380 pages. 1992,

Lecture Notes in Computer Science

This series reports new developments in computer science research and teaching, quickly,
informally, and at a high level. The timeliness of a manuscript is more important than its form,
which may be unfinished or tentative. The type of material considered for publication includes

— drafts of original papers or monographs,

— technical reports of high quality and broad interest,

— advanced-level lectures,

— reports of meetings, provided they are of exceptional interest and focused on a single topic.

Publication of Lecture Notes is intended as a service to the computer science community in that
the publisher Springer-Verlag offers global distribution of documents which would otherwise
have a restricted readership. Once published and copyrighted they can be cited in the scientific
literature.

Manuscripts

Lecture Notes are printed by photo-offset from the master copy delivered in camera-ready form.
Manuscripts should be no less than 100 and preferably no more than 500 pages of text. Authors
of monographs and editors of proceedings volumes receive 50 free copies of their book.
Manuscripts should be printed with a laser or other high-resolution printer onto white paper of
reasonable quality. To ensure that the final photo-reduced pages are easily readable, please use
one of the following formats:

Font size Printing area Final size
(points) (cm) (inches) (%)

10 0 122x193 48x76 100

12 153 x24.2 6.0x95 80

On request the publisher will supply a leaflet with more detailed technical instructions or a TEX
macro package for the preparation of manuscripts.

Manuseripts should be sent to one of the series editors or directly to:

Springer-Verlag, Computer Science Editorial I, Tiergartenstr. 17, W-6900 Heidelberg 1, FRG

ISBN 3-540-56188-9
ISBN 0-387-56188-9

